Math, asked by sanju2363, 10 months ago

rationalize the following:1/√2+√5​

Answers

Answered by Anonymous
1

 {\huge{\gray{\underline{\mathbb{\red{Ans}{\orange{wer}{\blue{:-} }}}}}}}

 \frac{1}{ \sqrt{2} +  \sqrt{5}  } \\

 \frac{1}{ \sqrt{2} +  \sqrt{5}  }  \times  \frac{\sqrt{2}  -  \sqrt{5} }{ \sqrt{2}  -  \sqrt{5}  } \\ \\ \frac{\sqrt{2}  -  \sqrt{5} }{ (\sqrt{2}  -  \sqrt{5})(\sqrt{2}  +  \sqrt{5})} \\

using the identity

x²-y²= (x-y) (x+y)

 \frac{ \sqrt{2} -  \sqrt{5}  }{2 - 5}  \\ \\ \frac{ \sqrt{2} -  \sqrt{5}  }{ - 3}

hope it will help you

Answered by Anonymous
5

Answer:

 \frac{1}{ \sqrt{2} +  \sqrt{5}  }  \\  \\  \frac{1}{ \sqrt{2} +  \sqrt{5}  } \times  \frac{ \sqrt{2 } -  \sqrt{5}  }{ \sqrt{2} -  \sqrt{5}  }  \\  \\   \frac{ \sqrt{2}  -  \sqrt{5} }{( \sqrt{2} -  \sqrt{5}  )( \sqrt{2}  +  \sqrt{5} }  \\  \\ using \: identity \\  \\  {x}^{2}  -   {y}^{2}  = (x - y)(x + y) \\  \\  \frac{ \sqrt{2} -  \sqrt{5}  }{2 - 5}  \\  \\  \frac{ \sqrt{2} -  \sqrt{5}  }{ - 3}

Similar questions