Math, asked by prajapatirhidamraj, 4 months ago

rationalized the denominator
step by step

Attachments:

Answers

Answered by mrAdorableboy
2

\huge\star{\red{\underline{\mathfrak{Answer:-}}}}

rationalise \:  \:  \frac{3}{ \sqrt{5}  -  \sqrt{2} }  \\  =  \frac{3}{ \sqrt{5} -  \sqrt{2}  }  \times  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5} +  \sqrt{2}  }  \\  =  \frac{3( \sqrt{5} +  \sqrt{2)}  }{ { \sqrt{5} }^{2} -  { \sqrt{2} }^{2}  }  \\  =  \frac{3( \sqrt{5}  +  \sqrt{2}) }{5 - 2}  \\  =  \frac{3( \sqrt{5} +  \sqrt{2)}  }{1}  \\  = 3( \sqrt{5}  +  \sqrt{2)}

\sf\pink{@\:Itz\:TheOptimusPrime}

\huge{\overbrace{\underbrace{\orange{Follow\:Me}}}}

Answered by HiteshJoshi7
1

Answer:

√5 -√2 ,I think

Step-by-step explanation:

 \frac{3}{ \sqrt{5}  -  \sqrt{2} }  \\  =  \frac{3}{ \sqrt{5 } -  \sqrt{2}  }  \times  \frac{ \sqrt{5}   +   \sqrt{2} }{ \sqrt{5} +  \sqrt{2}  }  \\ (a + b)(a - b) = ( {a}^{2}  -  {b}^{2} ) \\  \frac{3( \sqrt{5}  +  \sqrt{2})  }{ ({ \sqrt{5} })^{2}   -  ( { \sqrt{2} })^{2}  }  \\  =  \frac{3( \sqrt{5}  -  \sqrt{2}) }{5 - 2}  =  \\  \frac{3( \sqrt{5}  -  \sqrt{2}) }{3}  =   \sqrt{5}  -  \sqrt{2}

hope helps.

please mark brainliest

Similar questions