Math, asked by nj4467063, 8 months ago

rationalizing factor of root 180​

Answers

Answered by MaheswariS
5

\underline{\textsf{Given:}}

\mathsf{\sqrt{180}}

\underline{\textsf{To find:}}

\textsf{The rationalizing factor of}

\mathsf{\sqrt{180}}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{\sqrt{180}}

\mathsf{=\sqrt{36{\times}5}}

\mathsf{=\sqrt{36}{\times}\sqrt{5}}

\implies\mathsf{\sqrt{180}=6\sqrt{5}}

\textsf{when multiplying by}\;\mathsf{\sqrt{5}}

\mathsf{\sqrt{180}{\times}\sqrt{5}=6\sqrt{5}{\times}\sqrt{5}}

\mathsf{\sqrt{180}{\times}\sqrt{5}=6{\times}5=30}

\textsf{which is rational}

\therefore\textsf{Rationalizing factor of}\;\mathsf{\sqrt{180}}

\textsf{is}\;\mathsf{\sqrt{5}}

Answered by mysticd
2

 Given \: number \: \sqrt{180}

 Resolving \: 180 \:into \: product

 of \: prime \: factors , we \:get

2 | 180

________

2 | 90

________

3 | 45

________

3 | 15

________

**** 5

180 = 2×2×3×3×5

 \sqrt{180} = \sqrt{2^{2} \times 3^{2} \times 5 }

 = 2\times 3 \times \sqrt{5}

 = 6\sqrt{5}

 \red{ Rationalising \:factor \: of \: \sqrt{180}\: is }

 \green {= \sqrt{5}}

 \underline{ \pink{ Explanation :}}

 \sqrt{180} \times \sqrt{5}

 = 6\sqrt{5} \times \sqrt{5}

 = 6 \times 5

 = 30 \: \blue {( Rational \: number ) }

•••♪

Similar questions