Math, asked by rekhaguptarma, 1 year ago

Rationalizing the denominator
2 root 3 - root 5 / 2 root 2 +3 root 3

Answers

Answered by Pranshu6822
83

Step-by-step explanation:

2√3 - √5/ 2√2 + 3 √3

= 2√3-{√5/2√2*-2√2/-2√2} +3√3

=2√3-{ -2√10/-4*2} +3√3

= 2√3-{√10/4} +3√3

= 2√3 - √10/4 + 3√3

=8√3 - √10 + 12√3/4

= 20√3 -√10/4

Answered by harshvardhantyagi58
0

Answer:

We need to simplify the given expression :

\dfrac{2\sqrt{3}-\sqrt{5} }{2\sqrt{2}+3\sqrt{3} }

2

2

+3

3

2

3

5

Rationalizing both numerator and denominator, such that,

\dfrac{2\sqrt{3}-\sqrt{5} }{2\sqrt{2}+3\sqrt{3} }\times \dfrac{2\sqrt{2}-3\sqrt{3}}{2\sqrt{2}-3\sqrt{3}}

2

2

+3

3

2

3

5

×

2

2

−3

3

2

2

−3

3

=\dfrac{4\sqrt{6}-18-2\sqrt{10}+3\sqrt{15}}{(2\sqrt{2})^2-(3\sqrt{3})^2 }=

(2

2

)

2

−(3

3

)

2

4

6

−18−2

10

+3

15

=\dfrac{4\sqrt{6}-18-2\sqrt{10}+3\sqrt{15}}{-19}=

−19

4

6

−18−2

10

+3

15

So, the value of \dfrac{2\sqrt{3}-\sqrt{5} }{2\sqrt{2}+3\sqrt{3} }

2

2

+3

3

2

3

5

is \dfrac{4\sqrt{6}-18-2\sqrt{10}+3\sqrt{15}}{-19}

−19

4

6

−18−2

10

+3

15

.

Learn more,

Simplification

https://brainly.in/question/4380660

Similar questions