Math, asked by khemanirajesh07, 2 months ago

Rationalizing the denominator  3√5+4√3/ 3√5−4√3​

Answers

Answered by Anonymous
2

In this question , we have to rationalise the denominator of

 \\  \sf \:  \dfrac{3 \sqrt{5 } + 4 \sqrt{3}  }{3 \sqrt{5}  - 4 \sqrt{3} } \\  \\

SOLUTION :-

We have ,

 \\  \sf \:  \dfrac{3 \sqrt{5} + 4 \sqrt{3}  }{3 \sqrt{5}  - 4 \sqrt{3} } \\

Rationalising factor is [3√5 + 4√3].

Multiplying numerator and denominator by (3√5 + 4√3) ,

 \\  \implies \sf \:  \dfrac{3 \sqrt{5} + 4 \sqrt{3}  }{3 \sqrt{5}  - 4 \sqrt{3} }  \times  \dfrac{3 \sqrt{5}  + 4 \sqrt{3} }{3 \sqrt{5} + 4 \sqrt{3}  }  \\   \\  \\  \implies \sf \:  \dfrac{(3 \sqrt{5}  + 4 \sqrt{3})^{2}  }{(3 \sqrt{5}  - 4 \sqrt{3} )(3 \sqrt{5}  + 4 \sqrt{3}) }  \\  \\

In numerator ,

(a+b)² = a² + b² + 2ab

  • a = 3√5
  • b = 4√3

 \\

In denominator ,

(a-b)(a+b) = a² - b²

  • a = 3√5
  • b = 4√3

 \\  \implies \sf \:  \dfrac{( {3 \sqrt{5}) }^{2}  + ( {4 \sqrt{3}) }^{2}  + 2(3 \sqrt{5} )(4 \sqrt{3}) }{( {3 \sqrt{5}) }^{2}  -  {(4 \sqrt{3}) }^{2} }  \\  \\  \\  \implies \sf \:  \dfrac{45 + 48 + 24 \sqrt{15} }{45 - 48}  \\  \\  \\  \implies \sf \:  \dfrac{93 + 24 \sqrt{15} }{ - 3}  \\  \\  \\  \implies \sf \:  \cancel \dfrac{ - 93}{3}  +  \dfrac{ \cancel{24 }\sqrt{15} }{ \cancel3}  \\  \\  \\  \sf \implies  \:   \underline{- 31 + 8 \sqrt{15} } \\  \\

 \\  \therefore   \underbrace{\boxed{\mathfrak{ \dfrac{3 \sqrt{5} + 4 \sqrt{3}  }{3 \sqrt{5} - 4 \sqrt{3}  }  =  - 31 +  8\sqrt{15} }}}

 \\ \\

MORE IDENTITIES :-

★ (a-b)² = a² + b² - 2ab

★ (a+x)(a+y) = a² + (x+y)a + xy

★ (a+b)³ = a³ + 3a²b + 3ab² + b³

★ (a-b)³ = a³ - 3a²b + 3ab² - b³

Similar questions