Math, asked by panduranga46, 1 year ago

Rationalizing the denominator of  \frac { \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} }

Answers

Answered by BrainlyKing011
5

 \huge \bf{ \green{ \mid{ \overline{ \underline{ANSWER}}} \mid}}

Rationalizing the denominator of  \frac { \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} }

The denominator is

 \sqrt{5} - \sqrt{3}

We know that, Rationalizing factor ( R. F) will be its conjugate.

So, R. F =

 \sqrt{5} + \sqrt{3}

Now, We shall proceed like this

 = \frac { \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \\ \\ = \frac { \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \frac { \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \\ \\ = \frac{ (\sqrt{5} + \sqrt{3}) ^{2} }{ (\sqrt{5} ) ^{2} - (\sqrt{3} ) ^{2} } \\ \\ = \frac{5 + 3 + 2 \sqrt{15} }{5 - 3} \\ \\ = \frac{8 + 2 \sqrt{15} }{2} \\ \\ = \frac{2(4 + \sqrt{15}) }{2} \\ \\ = 4 + \sqrt{15}

Thus, We have rationalized the denominator of \frac { \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \:

Answered by adityachoudhary2956
0

☺❀good evening❀☺

☆AnSwEr ☆:

❤❤THANKS❤❤

Attachments:
Similar questions