Math, asked by cnparmar567cp, 5 months ago

rationalzie the denominator 4 upon root 5 +root 3​

Answers

Answered by pds39937
23

Step-by-step explanation:

By rationalizing the denominator of \frac{4 \sqrt{3}+5 \sqrt{2}}{\sqrt{48}+\sqrt{18}}

48

+

18

4

3

+5

2

we get

\bold{\frac{9+4 \sqrt{6}}{15}}

15

9+4

6

Step-by-step explanation:

Rationalizing the denominator means multiplying the numerator in a fraction by the value of the denominator but by its opposite signed value.

Now to rationalize the above figure we multiply both the numerator and denominator by [√48-√18]

\left[\frac{4 \sqrt{3}+5 \sqrt{2}}{\sqrt{48}+\sqrt{18}}\right]\left[\frac{\sqrt{48}-\sqrt{18}}{\sqrt{48}-\sqrt{18}}\right][

48 + 18

4

3

+5

2

][

48 − 18

48 − 18 ]

On removing the brackets and multiplying,

The denominator is multiplied by using the formula \bold{(a+b)(a-b)=a^{2}-b^{2}}(a+b)(a−b)=a

2

−b

2

\begin{gathered}\begin{aligned} &=\left[\frac{4 \sqrt{3}(\sqrt{48}-\sqrt{18})+5 \sqrt{2}(\sqrt{48}-\sqrt{18})}{48-18}\right] \\ &=\left[\frac{4 \sqrt{3}(\sqrt{48}-\sqrt{18})+5 \sqrt{2}(\sqrt{48}-\sqrt{18})}{30}\right] \\ &=\left[\frac{4 \sqrt{3} \sqrt{48}-4 \sqrt{3} \sqrt{18}+5 \sqrt{2} \sqrt{48}-5 \sqrt{2} \sqrt{18}}{30}\right] \\ &=\left[\frac{18+8 \sqrt{6}}{30}\right] \end{aligned}\end{gathered}

=[

48−18

4

3

( 48 − 18 )+5

2

( 48− 18 ) ]

=[ 30

4

3

( 48− 18 )+5

2

( 48 − 18 )]

=[ 30

4

3

48

−4

3

18

+5

2

48

−5

2

18

]

=[

30

18+8

6

]

By rationalizing the denominator of \frac{4 \sqrt{3}+5 \sqrt{2}}{\sqrt{48}+\sqrt{18}}

48

+

18

4

3

+5

2

we get

\bold{\frac{9+4 \sqrt{6}}{15}}

15

9+4

6

as the answer.


cnparmar567cp: thank you for the answer
Answered by adityajavalkar2019
1

Answer:

2( \sqrt{5}  -  \sqrt{3} )

hope this is helpful


cnparmar567cp: I didn't asked the method.i knew the method but everytime I ended up getting wrong answers. please don't fight because I didn't mentioned. sorry for inconvenience
rajendradahate151: ok bro
cnparmar567cp: i am sis
rajendradahate151: ok sis
cnparmar567cp: thank you for the answer @adityajavalkar
pds39937: stop chating here.. ✌
adityajavalkar2019: okay
pds39937: yep..✌✌ getting disturbed..
pds39937: duid.. ✌✌
cnparmar567cp: ohk
Similar questions