Math, asked by Abhijitpradhan2399, 9 months ago

Rationise the following denominators3- 2√2 / 3+2√2

Answers

Answered by Anonymous
2

\sf\huge\blue{\underline{\underline{ Question : }}}

Rationalise the following denominator 3- 2√2 / 3+2√2

\sf\huge\blue{\underline{\underline{ Solution : }}}

\tt\:\implies \dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}}

  • [Rationalise the numerator & denominator with 3 - 2√2 ]

\tt\:\implies \dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}}\times \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}}

\tt\:\implies \dfrac{(3 - 2\sqrt{2})^{2}}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})}

  • (a - b)² = a² + b² - 2ab
  • (a + b)(a - b) = a² - b²

\tt\:\implies \dfrac{(3)^{2} + (2\sqrt{2})^{2} - 2(3)(2\sqrt{2})}{(3)^{2} - (2\sqrt{2})^{2}}

\tt\:\implies \dfrac{9 + 8 - 6\sqrt{2}}{9 - 8}

\tt\:\implies 17 - 6\sqrt{2}

\underline{\boxed{\rm{\purple{\therefore \dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt {2}}=17 - 6\sqrt{2}.}}}}\:\orange{\bigstar}

______________________________________________________

Answered by Anonymous
4

 \sf \huge \bigstar \fbox \green{ \:  \: answer \:  \:  : -  }

 \sf \huge{17 - 12 \sqrt{2} }

 \sf \huge \bigstar \fbox \green{ \:  \: solution \:  \:  :  - }

 \tt  \huge \rightarrow \:   \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }

Rationalising the denominator,

  \tt \huge \rightarrow \:  \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }

\tt \huge \rightarrow \:  \frac{ {(3 - 2  \sqrt{2}  }^{2}) }{ {(3)}^{2} -  {(2 \sqrt{2} })^{2}  }

\tt \huge \rightarrow \:  \frac{ {3}^{2} - 2(3)(2 \sqrt{2)}  +  {(2 \sqrt{2} )}^{2}  }{9 - 8}

\tt \huge \rightarrow \:  \frac{9 - 12 \sqrt{2} + 8 }{1}

\tt \huge \rightarrow \: 17 - 12 \sqrt{2}

 \tt \huge \bigstar \fbox \green{ \:  \: formula \: used \:  \:  :  - }

 \bf \huge \star \red{ {(a  - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2} }

 \bf \huge \star \red{ \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)}

Similar questions