Math, asked by Anonymous, 7 months ago

rationlise the denominator​

Attachments:

Answers

Answered by Anonymous
1

Answer:

\huge⭐{\mathtt{\underline{\red{A}{\orange{N}}{\pink{S}}{\blue{W}}{\purple{E}}{\green{R\:}}}}}

=\large{\frac{6-√5}{6+√5}}

=\large{\frac{6-√5}{6+√5}}×\large{\frac{6-√5}{6-√5}}

=\large{\frac{(6-√5)^2}{(6)^2+(√5)^2}}

=\large{\frac{(6)^2-2(6)(√5)+(√5)^2}{(6)^2+(√5)^2}}

=\large{\frac{36-12√5}{36+5}}

=\large{\frac{36-12√5}{41}}

Answered by Anonymous
2

Answer:

\frac{41 + 12 \sqrt{5} }{31}

Step-by-step explanation:

 \frac{6  -  \sqrt{5} }{6 +  \sqrt{5} }  \\  \\  = \frac{6  -  \sqrt{5} }{6 +  \sqrt{5} } \times \frac{6  -  \sqrt{5} }{6  -  \sqrt{5} } \\  \\  =    \frac{(6 -  \sqrt{5} ) ^{2} }{(6 +  \sqrt{5} )(6 -  \sqrt{5}) } \\  \\  =  \frac{ {6}^{2}  + ( \sqrt{5} ) ^{2} - 2 \times 6 \times  \sqrt{5}  }{ {6}^{2}  -  { (\sqrt{5} })^{2} }  \\  \\  =  \frac{36 + 5 - 12 \sqrt{5} }{36 - 5} \\  \\  =  \frac{41 + 12 \sqrt{5} }{31}   \\  \\

• FORMULA USED

PLEASE SEE THE ATTACHED IMAGE. \\ \\

HOPE IT HELPS YOU

THANKS !

Attachments:
Similar questions