rationlise the denominator of √3+√2/5+√2
Answers
Answer:
Rationalising Factor of[ (√3+√2)-√5]=[(√3+√2)+√5)]
Now Multiply Numerator and Denominator.
\begin{gathered}\frac{1( \sqrt{3 + } \sqrt{2} ) + \sqrt{5} }{[( \sqrt{3} + \sqrt{2} ) - \sqrt{5}]\:[ ( \sqrt{3} + \sqrt{2}) + \sqrt{5} ]} \\ \\ \frac{( \sqrt{3} + \sqrt{2} ) + \sqrt{5} }{( \sqrt{3} + \sqrt{2} ) {}^{2} - \sqrt{5} {}^{2} } \\ \\ \frac{ \sqrt{3} + \sqrt{2} + \sqrt{5} }{3 + 2 + 2 \sqrt{3 \times 2} - 5} \\ \\ \frac{ \sqrt{3} +\sqrt{2}+ \sqrt{5} }{5 + 2 \sqrt{6} - 5 } \\ \\ \frac{ \sqrt{3} + \sqrt{2} +\sqrt{5} }{2 \sqrt{6} }\end{gathered}
[(
3
+
2
)−
5
][(
3
+
2
)+
5
]
1(
3+
2
)+
5
(
3
+
2
)
2
−
5
2
(
3
+
2
)+
5
3+2+2
3×2
−5
3
+
2
+
5
5+2
6
−5
3
+
2
+
5
2
6
3
+
2
+
5
Since √6is an Irrational Number in Denominator For Make it Rational Multiply √6with both Numerator and Denominator.
\begin{gathered}\frac{ (\sqrt{3} + \sqrt{2}+ \sqrt{5} ) \times \sqrt{6} }{2 \sqrt{6} \times \sqrt{ 6 } } \\ \\ \frac{ \sqrt{6 \times 3} +\sqrt{6\times 2}+ \sqrt{5 \times6 } }{2 \times 6} \\ \\ \frac{ \sqrt{18} + \sqrt{12}+ \sqrt{30}}{12} \\ \\ \frac{ 3\sqrt{2} + 2\sqrt{3}+\sqrt{30}}{12}\end{gathered}
2
6
×
6
(
3
+
2
+
5
)×
6
2×6
6×3
+
6×2
+
5×6
12
18
+
12
+
30
12
3
2
+2
3
+
30
mark me brainliest
Answer:
Step-by-step explanation:
GIVEN,
RATIONALIZING DENOMINATOR;
HOPE IT HELPS!!
PLS FOLLOW FOR MORE!!