Math, asked by srushti4687, 7 months ago

Rationlize the denomination 1 upon 3 √5 + 2 √2​

Answers

Answered by prince5132
7

ANSWER :-

 \\  \bigstar  \: \boxed{ \mathfrak{  \dfrac{1}{3 \sqrt{5}  + 2 \sqrt{2} }  = \dfrac{3 \sqrt{5} - 2 \sqrt{2}}{37} }} \\  \\

GIVEN :-

 \\  \implies \rm \:  \frac{1}{3 \sqrt{5} + 2 \sqrt{2}  }  \\  \\

TO FIND :-

\\  \implies \rm \: value \: of \:  \:  \frac{1}{3 \sqrt{5} + 2 \sqrt{2}  }  \\  \\

SOLUTION :-

 \\ \\  \implies \rm \:  \dfrac{1}{3 \sqrt{5} + 2 \sqrt{2}  }  \\  \\ \\  \implies \rm \: \:  \dfrac{1}{3 \sqrt{5}  + 2 \sqrt{2}  }  \times  \dfrac{3 \sqrt{5  }  - 2 \sqrt{2} }{3 \sqrt{5} - 2 \sqrt{2}  }  \\  \\ \\ \implies \rm\:  \dfrac{1 \big(3 \sqrt{5}  - 2 \sqrt{2}  \big)}{ \big(3  \sqrt{5 } + 2 \sqrt{2}  \big) \big( 3 \sqrt{5} - 2 \sqrt{2}  \big) }  \\  \\ \\ \implies \rm\:  \dfrac{3 \sqrt{5} - 2 \sqrt{2}}{(3 \sqrt{5} ) ^{2} - (2 \sqrt{2) ^{2} }  }  \\  \\ \\ \implies \rm \:  \dfrac{3 \sqrt{5} - 2 \sqrt{2}}{9 \times 5 - 4 \times 2}  \\  \\  \\ \implies \rm \:  \dfrac{3 \sqrt{5} - 2 \sqrt{2}}{45 - 8}  \\  \\ \\  \implies \boxed{\rm \:  \dfrac{3 \sqrt{5} - 2 \sqrt{2}}{37} } \\  \\

Hence the answer is  \rm \dfrac{3 \sqrt{5} - 2 \sqrt{2}}{37} \\ \\

ADDITIONAL INFORMATION :-

→ ru/rs = rs. comman factor

→r/s + t/u = ru + st/su ......addition

→r/s - t/u = ru - st/su .......subtraction

→r/s x t/u = rt/su ........multiplication

→r/s ÷ t/u = ru/su. ........division

Answered by Anonymous
22

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow \dfrac{1}{3\sqrt{5}+2 \sqrt{2}}

\large\underline\bold{TO,}

\sf\dashrightarrow\: RATIONALIZE\:THE\: DENOMINATOR.

IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: (a+b)(a-b)=a^2-b^2 \:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\star \dfrac{1}{3\sqrt{5}+2 \sqrt{2}}

\sf\red{MULTIPLYING \:BOTH \:NUMERATOR \:AND\: DENOMINATOR \:BY,\: 3\sqrt{5}-2 \sqrt{2} }

WE GET,

\sf\implies \dfrac{1}{3\sqrt{5}+2 \sqrt{2}}= \dfrac{3\sqrt{5}-2 \sqrt{2}}{3\sqrt{5}-2 \sqrt{2}}

\sf\implies \dfrac{3\sqrt{5}-2 \sqrt{2}}{ (3\sqrt{5}-2 \sqrt{2})(3\sqrt{5}+2 \sqrt{2})}

\sf\implies \dfrac{3\sqrt{5}-2 \sqrt{2}}{ (3\sqrt{5})^2-(2 \sqrt{2})^2} \:----\sf {\purple{\boxed{from\:given\:identity.}}}

\sf\implies \dfrac{3\sqrt{5}-2 \sqrt{2}}{ (9 \times 5)- (4 \times 2)}

\sf\implies \dfrac{ 3\sqrt{5}-2 \sqrt{2}}{ 45-8}

\sf\implies \dfrac{3\sqrt{5}-2 \sqrt{2}}{37}

\large{\boxed{\bf{\star\:\: \dfrac{3\sqrt{5}-2 \sqrt{2}}{37}\:\:\star }}}

\large\underline\bold\red{ THE\:RATIONALIZED\: DENOMINATOR\: OF\:\dfrac{1}{3\sqrt{5}+2 \sqrt{2}}\: IS\:\: \dfrac{3\sqrt{5}-2 \sqrt{2}}{37}}

_______________________

Similar questions