Math, asked by MIGHTY2055K, 3 months ago

Ravi borrowed ₹25000 at 15% per annum simple interest for 2 yrs. On the same day, Rakesh borrowed the same amount at the same rate for the same time period but compounded annually. Who pays more interest and by how much? ​ plz give step by step answer

Answers

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\tt Given \: that -  \begin{cases} & \tt{ Principal\: = \bf{25000 \: Rupees}} \\ & \tt{Rate \: of \: interest \: = \bf{15 \: percent}} \\ & \tt{Time \: = \bf{2 \: year's}} \end{cases}\\ \\\end{gathered}

{\large{\bold{\rm{\underline{Using \; concepts}}}}}

\tt \:  Formula \:  to \:  find  \: Simple \:  Interest \: and \: Compound \:  interest

{\large{\bold{\rm{\underline{Using \; formulas}}}}}

{\tt{\star Simple \: interest \: = \: \dfrac{P \times R \times T}{100}}}⋆

{\tt{\star \: Compound \:  interest  \:  = P \bigg((1+ \dfrac{R}{100})^{n} - 1 \bigg)}}

\; \; \; \; \; \; \; \; \; \; \;{\tt{Where,}}

⚪P denotes Principal

⚪R denotes Rate

⚪T denotes Time

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

~ Let's use the formula to find Simple Interest and implied the values and let us evaluate Simple Interest !!.

{\tt{:\implies Simple \: interest \: = \: \dfrac{P \times R \times T}{100}}}

{\tt{:\implies Simple \: interest \: = \: \dfrac{25000 \times 15 \times 2}{100}}}

{\tt{:\implies Simple \: interest \: = \:Rs \:  7500}} -   -   (1)

~ Now let's find the compound interest on the same amount at the same rate of interest for the same period by using formula to find Compound interest.

{\tt{ \: Compound \:  interest  \:  = P \bigg((1+ \dfrac{R}{100})^{n} - 1 \bigg)}}

{\tt{\: Compound \:  interest  \:  = 25000 \bigg((1+ \dfrac{15}{100})^{2} - 1 \bigg)}}

{\tt{\: Compound \:  interest  \:  = 25000 \bigg((\dfrac{115}{100})^{2} - 1 \bigg)}}

{\tt{\: Compound \:  interest  \:  = 25000 \bigg( (\dfrac{23}{20})^{2} - 1 \bigg)}}

{\tt{\: Compound \:  interest  \:  = 25000 \bigg(\dfrac{529}{400} - 1 \bigg)}}

{\tt{\: Compound \:  interest  \:  = 25000 \bigg(\dfrac{529 - 400}{400}  \bigg)}}

{\tt{\: Compound \:  interest  \:  = 25000 \bigg(\dfrac{129}{400} \bigg)}}

{\tt{\: Compound \:  interest  \:  = \: Rs \:  8062.50}} -  - (2)

\tt \:  From \: (1) \: and \: (2),  \: we \: conclude \: that

\tt \:  ⟼Compound  \: interest \:  >  \: Simple \: interest

\bf\implies \:Rakesh \: paid \: more \: interest.

\tt \:Difference \:  = Compound \:  interest \:  -  \: Simple \: interest

\tt \:  ⟼ \: Difference = 8062.50 - 7500

\tt \:  ⟼ \: Difference \:  =  \: Rs \: 562.50

Similar questions