Math, asked by preetiphotoslaptop, 6 months ago

Ravi obtained a loan of Rs.125000 from a bank. The bank charges 8% compound interest per annum, compounded annually. What amount will he have to pay at the end of 3 years to clear his debt.

Answers

Answered by divyankakarn17
2
P= ₹125000
R= 8%
T= 3 years
A= P*(100+R/100)^T
= 125000*(100+8/100)^3
= 125000*(108/100)^3
= 125000*(108/100*108/100*108/100)
= 125000*27/25*27/25*27/25
= 8*27*27*27
= ₹ 1,57,464
Compound interest= A-P
= ₹ 1,57,464 - ₹125000
= ₹ 32,464
I hope this helps you
Answered by InfiniteSoul
6

\sf{\underline{\boxed{\large{\blue{\mathsf{Solution}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Principle = Rs. 125000
  • Rate = 8%
  • Time = 3 years

_______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Amount = ???

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{Amount = P ( 1 +\dfrac{r}{10})^t}}}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{  Amount = 125000 ( 1 + \dfrac{8}{100})^3}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{  Amount = 125000 ( \dfrac{100 + 8}{100})^3}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{  Amount = 125000 (  \dfrac{108}{100})^3}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{  Amount = 125000 (  \dfrac{108\times 108 \times 108}{100 \times 100 \times 100})}}

⠀⠀

: \sf\implies\: {\bold{  Amount = 1250 (  \dfrac{108\times 108 \times 108}{100 \times 100 })}}

⠀⠀

: \sf\implies\: {\bold{  Amount = 125(  \dfrac{108\times 108 \times 108}{100 \times 10})}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{  Amount = 125 (  \dfrac{108\times 11664}{1000})}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{  Amount = 125(  \dfrac{1259712}{1000})}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{  Amount = (  \dfrac{157464000}{1000})}}

⠀⠀⠀⠀

: \sf\implies\: {\bold{  Amount = Rs. 157464}}

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Rs. 125000 will amount to Rs.157464 at 8% per annum in 3 years

Similar questions