Math, asked by komalsum72, 9 months ago

rds rationalization ex 3.1 first question second sub division​

Attachments:

Answers

Answered by StarrySoul
19

Solution :

We know that -

\bigstar\: \:  \sf \:   \dfrac{ \sqrt[n]{ a} }{ \sqrt[n]{b} }  = \sqrt[n]{ \dfrac{a}{b} }

 \longrightarrow\sf \:   \dfrac{ \sqrt[4]{1250} }{ \sqrt[4]{2} }

 \longrightarrow\sf  \:  \sqrt[4]{ \dfrac{1250}{2} }

 \longrightarrow\sf  \:  \sqrt[4]{ 625}

 \longrightarrow\sf  \:  \sqrt[4]{ ( {5})^{4} }

 \longrightarrow\sf  \: ( {5}^{4} ) { }^{ \frac{1}{4} }

 \longrightarrow\sf  \:5

 \therefore \: \sf \:   \dfrac{ \sqrt[4]{1250} }{ \sqrt[4]{2} }  = 5

Few useful identities relating to square roots :

• (√a)² = a

• √a√b = √ab

• √a/√b = √a/b

• (√a + √b)(√a - √b) = a - b

• (a + √b)(a - √b) = a² - b

• (√a ± √b)² = a ± 2√ab + b

• (√a + √b)(√c + √d) = √ac + √ad + √bc + √bd

Answered by Anonymous
11

 \bf \huge \fbox  \red{answer :  - }

 \bf \huge \implies  \frac{ \sqrt[4]{1250} }{ \sqrt[4]{ 2 } }

 \bf \huge \implies \frac{1250  ^{\frac{1}{4}} }{ {1}^{ \frac{1}{4} } }

 \bf \huge \implies(  { \frac{1250}{2} )}^{ \frac{1}{4} }

 \bf \huge \implies \:  {625}^{ \frac{1}{4} }

 \bf \huge \implies \:  ({5})^{4( \frac{1}{4} )}

 \bf \huge \implies \:  {5}^{1}

 \bf  \huge\red{ \implies \: 5}

Similar questions