Math, asked by TrustedAnswerer19, 1 month ago

Re- correction

\bf \: if \: \rm \: y = { (x + \sqrt{1 + {x}^{2} } } )^{ \: m} \\ \\ \bf \: then \: prove \: that : \\ \\ \rm \: {(1 + {x}^{2} ). \frac{ {d}^{2}y}{d {x}^{2} } }^{} + x \frac{dy}{dx} - {m}^{2} y = 0 \\ \\ \\ \bf \: and \: also \: find \: the \: value \: of \: \: \frac{ {d}^{3}y }{d {x}^{3} } \\ \\ \bf \: when \: \: x = 0

Answers

Answered by ItzAshleshaMane
21

This is your answer.

Hope it will help you..

Attachments:
Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {(x +  \sqrt{ {x}^{2}  + 1}) }^{m}

On taking log both sides, we get

\rm :\longmapsto\:logy = log {(x +  \sqrt{ {x}^{2}  + 1}) }^{m}

We know,

\rm :\longmapsto\:\boxed{ \tt{  \: \: log {x}^{y} = ylogx \:  \: }}

So, using this, we get

\rm :\longmapsto\:logy \:  =  \: m \: log[x +  \sqrt{ {x}^{2} + 1 } ]

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logy \:  =  \: m \:\dfrac{d}{dx} log[x +  \sqrt{ {x}^{2} + 1 } ] \:

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \:  \dfrac{d}{dx}logx =  \frac{1}{x} \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  =m \times  \dfrac{1 }{x +  \sqrt{ {x}^{2} + 1 }} \dfrac{d}{dx}[x +  \sqrt{ {x}^{2} + 1 }]

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  =\dfrac{m}{x +  \sqrt{ {x}^{2} + 1 }} \dfrac{d}{dx}[x +  \sqrt{ {x}^{2} + 1 }]

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx}x = 1 \: }} \:  \: and \:  \: \boxed{ \tt{ \: \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} } \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  =\dfrac{m}{x +  \sqrt{ {x}^{2} + 1 }}\bigg[1 + \dfrac{1}{2 \sqrt{ {x}^{2}  + 1}} \dfrac{d}{dx}( {x}^{2} + 1) \bigg]

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  =\dfrac{m}{x +  \sqrt{ {x}^{2} + 1 }}\bigg[1 + \dfrac{1}{2 \sqrt{ {x}^{2}  + 1}}  \times 2x \bigg]

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  =\dfrac{m}{x +  \sqrt{ {x}^{2} + 1 }}\bigg[1 + \dfrac{x}{\sqrt{ {x}^{2}  + 1}}  \bigg]

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  =\dfrac{m}{x +  \sqrt{ {x}^{2} + 1 }}\bigg[\dfrac{ \sqrt{ {x}^{2} + 1 }  + x}{\sqrt{ {x}^{2}  + 1}}  \bigg]

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  =\dfrac{m}{\sqrt{ {x}^{2} + 1 }}

\rm :\longmapsto\: \sqrt{ {x}^{2}  + 1} \: \dfrac{dy}{dx} = my

On squaring both sides, we get

\rm :\longmapsto\:( {x}^{2} + 1) {\bigg[\dfrac{dy}{dx} \bigg]}^{2} =  {m}^{2} {y}^{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{2} + 1) {\bigg[\dfrac{dy}{dx} \bigg]}^{2} =  {m}^{2} \dfrac{d}{dx}{y}^{2}

\rm :\longmapsto\: ({x}^{2}  + 1)\dfrac{d}{dx} {\bigg[\dfrac{dy}{dx} \bigg]}^{2} +  {\bigg[\dfrac{dy}{dx} \bigg]}^{2}\dfrac{d}{dx}( {x}^{2} + 1)  =  2y{m}^{2} \dfrac{dy}{dx}

\rm :\longmapsto\: 2({x}^{2}  + 1)\dfrac{dy}{dx} \dfrac{ {d}^{2}y}{d {x}^{2} } +  {\bigg[\dfrac{dy}{dx} \bigg]}^{2}(2x)  =  2y{m}^{2} \dfrac{dy}{dx}

\rm :\longmapsto\: 2\dfrac{dy}{dx} \bigg[( {x}^{2} + 1) \dfrac{ {d}^{2}y}{d {x}^{2} } +  x{\bigg[\dfrac{dy}{dx} \bigg]}\bigg] =  2y{m}^{2} \dfrac{dy}{dx}

\rm :\longmapsto\: ( {x}^{2} + 1) \dfrac{ {d}^{2}y}{d {x}^{2} } +  x{\bigg[\dfrac{dy}{dx} \bigg]} = y{m}^{2}

\rm :\longmapsto\: ( {x}^{2} + 1) \dfrac{ {d}^{2}y}{d {x}^{2} } +  x{\bigg[\dfrac{dy}{dx} \bigg]} = {m}^{2} y

\rm :\longmapsto\: ( {x}^{2} + 1) \dfrac{ {d}^{2}y}{d {x}^{2} } +  x{\bigg[\dfrac{dy}{dx} \bigg]} -  {m}^{2} y = 0

Hence, Proved

When x = 0

\rm :\longmapsto\:y = 1

\rm :\longmapsto\:\dfrac{dy}{dx} = m

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  {m}^{2}

Now, we have

\rm :\longmapsto\: ( {x}^{2} + 1) \dfrac{ {d}^{2}y}{d {x}^{2} } +  x{\bigg[\dfrac{dy}{dx} \bigg]} -  {m}^{2} y = 0

can be rewritten as

\rm :\longmapsto\:( {x}^{2} + 1)y_2 + xy_1 -  {m}^{2} y = 0

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{2} + 1)y_2 + \dfrac{d}{dx}xy_1 - \dfrac{d}{dx} {m}^{2} y = 0

\rm :\longmapsto\:( {x}^{2} + 1)y_3 + y_2(2x) + xy_2 + y_1  -   {m}^{2}y_1 = 0

Now, Substitute x = 0, we get

\rm :\longmapsto\:(0 + 1)y_3  + m  -  {m}^{2} \times m = 0

\rm :\longmapsto\:y_3  + m  -  {m}^{3} = 0

\bf\implies \:y =  {m}^{3} - m

\bf\implies \:\dfrac{ {d}^{3} y}{ {dx}^{3} } = m( {m}^{2}  - 1)

Similar questions