reaction mechanism of bromination of alkane?
Answers
Answered by
1
The reaction of a halogen with an alkane in the presence of ultraviolet (UV) light or heat leads to the formation of a haloalkane (alkyl hal
Answered by
1
The reaction of a halogen with an alkane in the presence of ultraviolet (UV) light or heat leads to the formation of a haloalkane (alkyl halide). An example is the chlorination of methane.
Halogenation mechanism. In the methane molecule, the carbon‐hydrogen bonds are low‐polarity covalent bonds. The halogen molecule has a nonpolar covalent bond. UV light contains sufficient energy to break the weaker nonpolar chlorine‐chlorine bond (∼58 kcal/mole), but it has insufficient energy to break the stronger carbon‐hydrogen bond (104 kcal/mole). The fracture of the chlorine molecule leads to the formation of two highly reactive chlorine free radicals (chlorine atoms). A free radical is an atom or group that has a single unshared electron.
Halogenation mechanism. In the methane molecule, the carbon‐hydrogen bonds are low‐polarity covalent bonds. The halogen molecule has a nonpolar covalent bond. UV light contains sufficient energy to break the weaker nonpolar chlorine‐chlorine bond (∼58 kcal/mole), but it has insufficient energy to break the stronger carbon‐hydrogen bond (104 kcal/mole). The fracture of the chlorine molecule leads to the formation of two highly reactive chlorine free radicals (chlorine atoms). A free radical is an atom or group that has a single unshared electron.
Similar questions