Read the following proof of the polynomial identity a3+b3=(a+b)3−3ab(a+b).
Step 1: a3+b3=a3+3a2b+3ab2+b3−3ab(a+b)
Step 2: a3+b3=a3+3a2b+3ab2+b3−3a2b−3ab2
Step 3: a3+b3=a3+3a2b−3a2b+3ab2−3ab2+b3
Step 4: a3+b3=a3+b3
Match each step with the correct reason.
Answers
Answered by
3
given identity is
a³+b³ = (a+b)³ - 3ab(a+b)
we have to prove this
as we know that
(a+b)³= a³+b³+3a²b+3ab²
put this value in the identity
a³+b³ = a³+ b³+3a²b+3ab²-3ab(a+b)
now open the bracket
a³+b³= a³+b³+3a²b+3ab²-3a²b-3ab²
minus and will cancel each other
a³ + b³ = a³ + b³
hence prooved every step
Similar questions