Math, asked by malikahyndavi, 1 year ago

Read the information given below and answer the question that follows. F(x) = x3 - 3 , g(x) = (1/x) - x Find the value of fog(-1) - gof(-1).

Answers

Answered by shashanksharma101
0
put the value of f(-1) we get= -1×3-3= -6 like u can solve akk
Answered by Qwparis
0

The correct answer is \frac{-27}{4}.

Given: f(x) = x^{3}-3 and g(x) = \frac{1}{x}-x.

To Find: The value of fog(-1) - gof(-1).

Solution:

fog(x) = f(g(x)) = g(x)^{3}-3.

fog(x) = (\frac{1}{x}-x )^{3} -3

Now put x = -1.

fog(-1) = (\frac{1}{(-1)}-(-1) )^{3} -3

fog(-1) = (-1+1)^{3} -3

fog(-1) = 0 - 3

fog(-1) = -3

gof(x) = \frac{1}{f(x)}-f(x)

gof(x) = \frac{1}{x^{3} -3}-(x^{3} -3)

gof(x) = \frac{1}{x^{3} -3}-x^{3} +3

Now put x = -1.

gof(-1) = \frac{1}{(-1)^{3} -3}-(-1)^{3} +3

gof(-1) = \frac{1}{-1 -3}-(-1 )+3

gof(-1) = \frac{-1}{4}+4

gof(-1) = \frac{15}{4}

Now put the value of fog(-1) and gof(-1) in the equation.

fog(-1) - gof(-1) = -3-\frac{15}{4}

fog(-1) - gof(-1) = \frac{-12-15}{4}

fog(-1) - gof(-1) = \frac{-27}{4}

Hence, the value of fog(-1) - gof(-1) is \frac{-27}{4}.

#SPJ2

Similar questions