Math, asked by ella4045, 3 months ago

read the instructions first​

Attachments:

Answers

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

☆ Let number of munckin be 'x' and number of yema be 'y'

☆ According to first condition, we get

\tt \longrightarrow \: x + y \geqslant 10 -  -  - (1)

☆ According to second condition, we get

\tt \longrightarrow \: 3x + 2y \geqslant 50 -  -  - (2)

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation (1) are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 10 \\ \\ \sf 5 & \sf 5 \\ \\ \sf 10 & \sf 0 \end{array}} \\ \end{gathered}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation (2) are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 25 \\ \\ \sf 10 & \sf 10 \\ \\ \sf 20 & \sf  - 5 \end{array}} \\ \end{gathered}

☆ Origin test for the first equation :-

\tt \longrightarrow \: 0 + 0 \geqslant 10

\tt\implies \:0 \geqslant 10 \: false \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt \: so \: shade \: away \: from \: origin

☆ Origin test for the second equation:-

\tt \longrightarrow \: 3 \times 0 + 2 \times 0 \geqslant 50

\tt\implies \:0 \geqslant 50 \: false \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt \: so \: shade \: away \: from \: origin

Attachments:
Answered by tennetiraj86
2

Step-by-step explanation:

Steps in Polya's method:-

  • Understanding the problem
  • Devise a plan
  • Carryout a plan
  • Look back

Understanding the problem:-

Let x be the number of munchkin

y be the number of yemma

Devise a plan:-

x+y≥10----(1)

3x+2y≥50----(2)

Carryout a plan:-

y≥-x+10

and

y≥ -3/2 x + 25

Look back:-

(10,15)

10+15≥10

25≥10

and

3(10)+2(15)≥50

=>30+30≥50

60≥50

Attachments:
Similar questions
Math, 3 months ago