REAL NUMBERS do EXERCISE 1.1 1. Use Euclid's division algorithm to find the HCF of : (i) 135 and 225 (ii) 196 and 38220 2. Show that any positive add inteqorin (iii) 867 and 255
Answers
Answered by
0
Answer:
(i) 45.
Explanation:-
(i) 135 and 225
Sol:- 135<225
Using Euclid's division algorithm-
a=bq+r. { where a and b are integers. And a>b. (q=quotient and r=remainder of a and b)}
step 1- 225=135x1+90
step 2- 135=90x1+45
step 3- 90=45x2+0
so, H.C.F. = 45.
Answered by
0
Answer:
make me as brainliest and thank me if the answer is useful.
Step-by-step explanation:
By Euclid's division lemma,
225=135×1+90
r=90
135=90×1+45
r=4
90=45×2+0
So, H.C.F of 135 and 225 is 45
(ii) By Euclid's division lemma,
38220=196×195+0r=0
So, H.C.F of 38220 and 196 is 196
(iii) By Euclid's division lemma,
867=255×3+102
r=10
255=102×2+51
r=51
102=51×2+0
So, H.C.F of 867 and 255 is 51
The highest HCF among the three is 196.
Similar questions