Math, asked by aliyrehman72, 6 months ago

Real part of sin(a+i B) is???
solve ​

Answers

Answered by creativearadhya07
0

Step-by-step explanation:

sin(α+iβ)=sinα.cos(iβ)+cosα.sin(iβ)

cos(iβ)=1−  

2!

(iβ)  

2

 

​  

+  

4!

(iβ)  

4

 

​  

−...

=1+  

2!

β  

2

 

​  

+  

4!

β  

4

 

​  

+...

2

e  

β

+e  

−β

 

​  

=  

2

1

​  

[(1+  

1!

β

​  

+  

2!

β  

2

 

​  

+...)+(1−  

1!

β

​  

+  

2!

β  

2

 

​  

−...)]

=1+  

2!

β  

2

 

​  

+  

4!

β  

4

 

​  

+...=cos(iβ)

sin(iβ)=iβ−  

3!

(iβ)  

3

 

​  

+  

5!

(iβ)  

5

 

​  

−...

=i[β+  

3!

β  

3

 

​  

+  

5!

β  

5

 

​  

−...]=  

2

i[e  

β

+e  

−β

]

​  

 

∴sin(α+iβ)=sinα.  

2

e  

β

+e  

−β

 

​  

+cosα.i(  

2

e  

β

+e  

−β

 

​  

)

∴ Real part of sin(α+iβ)=sinα.  

2

e  

β

+e  

−β

 

Similar questions