Math, asked by 982939011, 2 months ago

Rectangle ABCD is graphed in the coordinate plane. The following are the vertices of the rectangle: A(3,−2), B(6,−2), C(6,5) and, D(3,5) What is the area of rectangle ABCD?

Answers

Answered by 12thpáìn
49

Given

  • ABCD is a Rectangle
  •  \sf{Vertices \:  of \:   \boxed{ \:   \: \:  \:  \: }  \:  \:  A(3,−2), B(6,−2), C(6,5) \:  and, D(3,5)}

To Find

  • Area of rectangle ABCD

Solution

_____________________

We know that

Difference between two points is given by

  \:  \:  \:  \:  \: \sf \sqrt{(Diff.~~ of ~~ abscissae )² +( Diff.~~ of ~~ ordinates)²}

~~~~~~  \sf \mapsto    DC = \sqrt{(6-3)² +(5-5)²}

~~~~~~ \sf \mapsto   DC = \sqrt{(3)² +(0)²}

~~~~~~ \sf\mapsto    DC = \sqrt{9}

~~~~~~ \sf \mapsto   DC =3 \\  \\

 ~~~~~~ \sf  \mapsto    AB= \sqrt{(6-3)² +( - 2 + 2)²}

~~~~~~ \sf  \mapsto   AB= \sqrt{(3)² +( 0)²}

~~~~~~ \sf \mapsto    AB= \sqrt{9}

~~~~~~ \sf \mapsto    AB=3 \\  \\

 ~~~~~~ \sf  \mapsto   AD = \sqrt{(3 - 3)² +( - 2  - 5)²}

~~~~~~ \sf \mapsto    AD = \sqrt{(0)² +( - 7)²}

~~~~~~ \sf \mapsto    AD = \sqrt{49}

~~~~~~ \sf\mapsto     AD = 7 \\  \\

~~~~~~  \sf\mapsto      BC = \sqrt{(6 - 6)² +(  5 + 2)²}

~~~~~~ \sf\mapsto      BC = \sqrt{(0)² +(  7)²}

~~~~~~ \sf \mapsto     BC = \sqrt{49}

~~~~~~ \sf\mapsto      BC = 7 \\  \\

{\bf  \:  \: AB = DC  ~~~~~~~,~~~~~~~ AD = BC }

So, ABCD is a Parallelogram

Now

In Diagonal BD and AC

~~~~~~  \sf  \mapsto     BD = \sqrt{(6 - 3)² +(  - 2 - 5)²}

~~~~~~ \sf    \mapsto   BD = \sqrt{(3)² +(  - 7)²}

~~~~~~ \sf  \mapsto     BD = \sqrt{9 + 49}

~~~~~~ \sf   \mapsto    BD = \sqrt{58} \\  \\

~~~~~~  \sf   \mapsto     AC = \sqrt{(6 - 3)² +(  5 + 2)²}

~~~~~~ \sf  \mapsto      AC = \sqrt{(3)² +( 7)²}

~~~~~~ \sf \mapsto       AC = \sqrt{9 +49}

~~~~~~ \sf   \mapsto     AC = 58 \\  \\

Clearly,

{\sf DB²=DC²+BC²~~~~~~,~~~~~~ AC²= AB²+BC²}

Aslo We know that

  • If diagonal are Equal then the Figure is Rectangle .

\sf Area ~of ~rectangle \:  ABCD = Length (AB) × Breadth (BC)

\sf Area ~of ~rectangle \:  ABCD = 3 \times 7

\bf  \underbrace{ \pink{Area ~of ~rectangle \:  ABCD = 21 \: sq. \: units}}

Attachments:
Answered by madukasundi157
23

Answer:

See the attachment photos.

Area of rectangle ABCD = 21 sq. units.

Don't forget to thanks

Mark as brainlist.

Attachments:
Similar questions