Math, asked by ashwiniyadav1980, 11 months ago

rectangular room 5.6 metres into 4.8 m is to be carpeted with a carpet 80 cm wide find the length of a carpet required​

Answers

Answered by Anonymous
15

❏ Question:-

Rectangular room 5.6 metres into 4.8 m is to be carpeted with a carpet 80 cm wide find the length of a carpet required.

❏ Solution:-

Given:-

➝For the Room Floor:

  • Length (l)=5.6 metres
  • breadth (b)=4.8 metres.

➝For the Room carpet:

  • breadth (b')=80 cm= 0.8 metres.

To Find:-

  • length of the carpet=?=l' (let)

Ans:-

Now, the Area of the Room floor is,

\sf\longrightarrow Area_{room\:floor}=(5.6\times4.8)\:m{}^{2}

Now , the area of the Room carpet

\sf\longrightarrow Area_{carpet}=(0.8\times l')\:m{}^{2}

Now, the floor needs to be covered by the carpet so,

\bf\therefore the Area of the Room floor = the Area of the Room carpet.

\sf\longrightarrow(5.6\times4.8)=0.8\times l'

\sf\longrightarrow\frac{(\cancel{5.6}\times4.8)}{\cancel{0.8}}=l'

\sf\longrightarrow 7\times 4.8=l'

\sf\longrightarrow\boxed {\large{\red{l'=33.6\:\:m}}}

\bf\therefore Length of the Carpet=33.6 m.

━━━━━━━━━━━━━━━━━━━━━━━

Some Useful Formulas

✦CIRCLE✦

❚ For a Circle of diameter r ,

(1)Area is given by,

\sf\longrightarrow \boxed{Area=\pi r{}^{2}}

(2) Circumference is given by,

\sf\longrightarrow\boxed{ Circumference=2\pi r=\pi d}

✦RECTANGLE✦

For a rectangle of length l and breadth b,

\sf\longrightarrow \boxed{Area=length\times breadth}

\sf\longrightarrow \boxed{Perimeter=2\times(length+Breadth)}

\sf\longrightarrow \boxed{Diagonal=\sqrt{length{}^{2}+Breadth{}^{2}}}

✦SQUARE✦

For a square of side a ,

\sf\longrightarrow \boxed{Area=Side{}^{2}}

\sf\longrightarrow \boxed{Perimeter=4\times side}

\sf\longrightarrow \boxed{Diagonal=\sqrt{2}\times side}

✦TRIANGLE✦

Triangle of sides a, b and c

\sf\longrightarrow \boxed{Perimeter=a+b+c}[/tex</p><p>[tex]\sf\longrightarrow \boxed{S=\frac{a+b+c}{2}}

[Where, S= Half of Perimeter]

\sf\longrightarrow \boxed{Area=\sqrt{S(S-a)(S-b)(S-c)}}

[ using Heron's Formula]

✰For a Right angled triangle of base b and height h,

\sf\longrightarrow \boxed{Area=\frac{1}{2}\times base\times height}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

(Please mark it .... if it helps)

Similar questions