Math, asked by shubhi12397, 5 months ago

Reduce matrix in echelon form and find its rank​

Attachments:

Answers

Answered by jairocker143
0

Answer:

sorry I didn't know have a nice day sorry g

outback

unfortunately usually techno

Step-by-step explanation:

tbsp baking Hammurabi untadi unusual general

Answered by madeducators2
1

Given:      

Let the given matrix be A = \left[\begin{array}{cccc}1^{2} &2^{2} &3^{2}&4^{2}  \\2^{2} &3^{2} &4^{2}&5^{2}  \\3^{2} &4^{2} &5^{2}&6^{2}\\4^{2}&5^{2}&6^{2}&7^{2}      \end{array}\right]

To find:

We have to find the echelon form of the given matrix and the rank of the given matrix

Solution:

In echelon form only row operations are performed

A = \left[\begin{array}{cccc}1&4&9&16\\4&9&16&25\\9&16&25&36\\16&25&36&49\end{array}\right]

Now R₂→R₂-4R₁ , R₃→R₃-9R₁ and R₄→R₄-16R₁

A = \left[\begin{array}{cccc}1&4&9&16\\0&-7&-20&-39\\0&-20&-56&-108\\0&-39&-108&-177\end{array}\right]

      R₃→7R₃-20R₂ ,R₄→7R₄-39R₂

A = \left[\begin{array}{cccc}1&4&9&16\\0&-7&-20&-39\\0&0&8&-14\\0&0&14&282\end{array}\right]

Now  R₄→4R₄-7R₃

A =  \left[\begin{array}{cccc}1&4&9&16\\0&-7&-20&-39\\0&0&8&-14\\0&0&0&1226\end{array}\right]

Now R₂→R₂/-7    R₃→R₃/8    R₄→R₄/1226

A =  \left[\begin{array}{cccc}1&4&9&16\\0&1&\frac{20}{7} &\frac{39}{7} \\0&0&1&\frac{-7}{4} \\0&0&0&1\end{array}\right]

Hence this is the ECHELON form of given matrix  \left[\begin{array}{cccc}1&4&9&16\\0&1&\frac{20}{7} &\frac{39}{7} \\0&0&1&\frac{-7}{4} \\0&0&0&1\end{array}\right]

In the above form number of non zero rows = 4

∴The rank of the given matrix = 4

Similar questions