Math, asked by rshewale555, 2 months ago

reduce the D.E. dy/dx = cos(x+y) to the variable separable form and hence solve

Answers

Answered by tridibdas546
0

Answer:

i) 1+

dx

dy

=coses(x+y)

let x+y=t

1+

dx

dy

=

dx

dt

dx

dt

= cosect

∫dx=∫sintdt

x=−cost+c

x=−cos(x+y)+c

(ii) (x−y)

2

dx

dy

=a

2

let (x−y)=t

∴1−

dx

dy

=

dx

dt

So we can write

t

2

(1−

dx

dt

)=a

2

1−

dx

dt

=

t

2

a

2

1−

t

2

a

2

=

dx

dt

∫dx=∫

1−

t

2

a

2

1

−dt

∫dx=∫

t

2

−a

2

t

2

dt

x=∫

t

2

−a

2

(t

2

−a

2

)+a

2

dt

x=∫dt+a

2

t

2

−a

1

1

dt

x=t+a

2

2a

1

log∣

t+a

t−a

∣+c

x=t+

2

a

log∣

t+a

t−a

∣+c

x=(x−y)+

2

a

log∣

x−y+a

x−y−a

∣+c

Answered by pratikshashelke98
0

Answer:

(i) 1+dydx = coses (x+y) let x + y = t 1 + dydx = dtdx dtdx = ...

Step-by-step explanation:

Substitute u = x - y , we get du/d = 1 - dy/dx . The given...

Similar questions