Math, asked by sid3083, 1 year ago

Reduce the equation √3x-y-2 = 0 into normal form. Find the values of p and a

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{Line is}

\mathsf{\sqrt{3}x-y-2=0}

\textbf{To find:}

\textsf{Normal form of the given line}

\mathsf{}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\sqrt{3}x-y-2=0}

\mathsf{\sqrt{3}x-y=2}

\textsf{Divide bothsides by 2}

\mathsf{\dfrac{\sqrt{3}}{2}x-\dfrac{1}{2}y=1}

\mathsf{x\left(\dfrac{\sqrt{3}}{2}\right)+y\left(\dfrac{-1}{2}\right)=1}

\mathsf{x\,cos\left(\dfrac{-\pi}{6}\right)+y\,sin\left(\dfrac{-\pi}{6}\right)=1}

\mathsf{Comparing\,with\;x\,cos\alpha+y\,sin\alpha=p\;we\;get}

\mathsf{\alpha=\dfrac{-\pi}{6}\;\;and\;\;p=1}

\textbf{Find more:}

Reduce the equation root 3x+y+2=0 to 1)slope intercept form 2)intercept form and 3) normal form

https://brainly.in/question/2754095

Similar questions