Math, asked by gshsjhsuss, 2 months ago

reduce the following equation into standard quadratic equation formed​

Attachments:

Answers

Answered by Anonymous
3

We have

 \sf \to \:  \dfrac{x - 2}{x - 3}  +  \dfrac{x - 4}{x - 5}  =  \dfrac{10}{3}

To Find

Reduce this equation into standard quadratic equation

Now Take

 \sf \to \:  \dfrac{x - 2}{x - 3}  +  \dfrac{x - 4}{x - 5}  =  \dfrac{10}{3}

Take LCM on LHS

 \sf \to \:  \dfrac{(x - 2)(x - 5) + (x - 4)(x - 3)}{(x - 3)(x - 5)}  =  \dfrac{10}{3}

 \sf \to \:  \dfrac{ {x }^{2}  - 5x - 2x + 10 +  {x}^{2} - 3x - 4x + 12 }{ {x}^{2}  - 5x - 3x + 15}  =  \dfrac{10}{3}

 \sf \to \:  \dfrac{ {x }^{2}  - 7x + 10 +  {x}^{2}  - 7x + 12 }{ {x}^{2}  -8x + 15}  =  \dfrac{10}{3}

\sf \to \:  \dfrac{2 {x }^{2}  - 14x + 22 }{ {x}^{2}  -8x + 15}  =  \dfrac{10}{3}

\sf \to \:  \dfrac{2( {x }^{2}  - 7x + 11)}{ {x}^{2}  -8x + 15}  =  \dfrac{10}{3}

\sf \to \:  \dfrac{{x }^{2}  - 7x + 11}{ {x}^{2}  -8x + 15}  =  \dfrac{5}{3}

Using Cross multiplication method

 \sf \to \:  3( {x}^{2}  - 7x + 11) = 5( {x}^{2}  - 8x + 15)

 \sf \to \: 3 {x}^{2}  - 21x + 33 = 5 {x}^{2}  - 40x + 75

 \sf \to \: 5 {x}^{2}  - 3 {x}^{2}  - 40x + 21x + 75 - 33 = 0

 \sf \to \: 2 {x}^{2}  - 19x + 42 = 0

Now Find Value of x

 \sf \to \: 2 {x}^{2}  - 19x + 42 = 0

Factories the equation, we get

 \sf \to \: 2 {x}^{2}  - 12x - 7x + 42 = 0

 \sf \to \: 2x( {x}^{}  - 6) - 7(x - 6) = 0

 \sf \to \: (2x - 7)(x - 6) = 0

 \sf \to \: x =  \dfrac{7}{2}  \: and \: x = 6

Answered by OtakuSama
33

Given Equation:-

\\ \sf{ \bold{ \frac{x - 2}{x - 3}  +  \frac{x - 4}{x - 5}  =  \frac{10}{3} }}

To Find:-

 \\ \sf{ \rightarrow{The \: value \: of \:  \bold{x}}}

Solution:-

\\ \sf{  \frac{x - 2}{x - 3}  +  \frac{x - 4}{x - 5}  =  \frac{10}{3} }

 \\  \sf{ \implies{ \frac{(x - 2)(x - 5) + (x - 4)(x - 3)}{(x - 3)(x - 5)}  =  \frac{10}{3} }}

 \\  \sf{ \implies{ \frac{x {}^{2} - 5x - 2x + 10 +  {x}^{2}  - 3x - 4x + 12 }{ {x}^{2} - 5x - 3x  +  15 } =  \frac{10}{3}  }}

 \\  \sf{ \implies{ \frac{2 {x}^{2} - 14x + 22 }{ {x}^{2} - 8x  +  15 } =  \frac{10}{3}  }}

\\  \sf{ \implies{ \frac{2( {x}^{2} - 7x + 11 )}{ {x}^{2}  - 8x  + 15}  =  \frac{10}{3} }}

\\  \sf{ \implies{ \frac{ {x}^{2} - 7x + 11 }{ {x}^{2}  - 8x  +  15}  =  \frac{5}{3} }}

\\  \sf{ \implies{3 {x}^{2}  - 21x + 33 = 5 {x}^{2}  - 40x  + 75}}

 \\  \sf{ \implies{ 5 {x}^{2}  - 40x  +  75 - 3 {x}^{2}  + 21x  - 33 = 0}}

\\  \sf{ \implies{ 2{x}^{2}  - 19x  + 42= 0}}

 \\  \sf{ \implies{2x {}^{2}  - 12x - 7x + 42 = 0}}

 \\  \sf{ \implies{2x(x - 6) - 7(x - 6) = 0}}

 \\  \sf{ \implies{(x  - 6)(2x - 7) = 0}}

Hence,

 \sf{ \:  \: x - 6 = 0} \\   \therefore \sf{ \orange{x = 6}}

Again,

 \sf{ \:  \: 2x - 7 = 0} \\  \sf{ \therefore{ \orange{x =  \frac{7}{2} }}}

Hence, the answer is:-

 \sf{ \bold{x}} = 6,\: \frac{7}{2}

Similar questions