Math, asked by jajalaaruna9441, 1 month ago

reduce the following into linear equations in two variables 5/x+2y -7/x+2y =10 and 3/ x+2y + 8/x+2y=12​

Answers

Answered by ZaraAntisera
2

Answer:

\mathrm{\frac{5}{x}+2y-\frac{7}{x}+2y=10,\:\frac{3}{x}+2y+\frac{8}{x}+2y=12\quad :\quad x=\frac{13}{2},\:y=\frac{67}{26},\:\quad \:y\ne \frac{5}{2},\:x\ne \:0}

Step-by-step explanation:

\mathrm{\begin{bmatrix}\frac{5}{x}+2y-\frac{7}{x}+2y=10 \\\\\ \frac{3}{x}+2y+\frac{8}{x}+2y=12\end{bmatrix}}

\mathrm{Substitute\:x=-\frac{1}{5-2y}}

\mathrm{\begin{bmatrix}\frac{3}{-\frac{1}{5-2y}}+2y+\frac{8}{-\frac{1}{5-2y}}+2y=12\end{bmatrix}}

\mathrm{\begin{bmatrix}26y-55=12\end{bmatrix}}

\mathrm{For\:}x=-\frac{1}{5-2y}

\mathrm{Substitute\:}y=\frac{67}{26}

x=-\frac{1}{5-2\cdot \frac{67}{26}}

x=\frac{13}{2}

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

x=\frac{13}{2},\:y=\frac{67}{26},\:\quad \:y\ne \frac{5}{2},\:x\ne \:0

Similar questions