Math, asked by damus690, 11 months ago

reduce the rational expressions x²-16÷x²+8x+16 to its lowest form ​

Answers

Answered by djamnouroy2005
7

Answer:

Step

  1. (x^2-16)/(x²+8x+16)

(x^2-16)= x^2 - 4^2 = (x - 4)(x + 4)

x^2+8x +16=x^2+4x+4x+16 =x(x+4)+4(x+4)=(x+4)(x+4)

∴x²-16÷x²+8x+16=(x-4)(x+4)/(x+4)(x+4)

                           =(x-4)/(x+4)

Answered by ChitranjanMahajan
1

The lowest form is \frac{x}{8} - \frac{2}{8}  - \frac{3}{2x} - \frac{3}{4}.

Given

\frac{x^2 - 16}{8x + 16}

To Find

Lowest reduced form

Solution

\frac{x^2 - 16}{8x + 16}

= \frac{x^2 - 4-12}{8x + 16}

= \frac{x^2 - 2^2-12}{8x + 16}

We know that a² - b² = (a  + b)(a - b)

Therefore, the expression is

= \frac{(x + 2)(x-2)}{8x + 16} - \frac{12}{8x+16}

Now taking 8 common in the denominator we get

\frac{(x + 2)(x-2)}{8(x + 2)} - \frac{3}{2(x+2)}

Now canceling (x +2) out of the numerator and denominator we get

\frac{(x-2)}{8} - \frac{3}{2(x+2)}

= \frac{x}{8} - \frac{2}{8}  - \frac{3}{2x} - \frac{3}{4}

Adding the constants up we get

\frac{x}{8}   - \frac{3}{2x} - \frac{5}{4}

\frac{x}{8} - \frac{2}{8}  - \frac{3}{2x} - \frac{3}{4}

Therefore the lowest form is \frac{x}{8} - \frac{2}{8}  - \frac{3}{2x} - \frac{3}{4}.

#SPJ2

Similar questions