English, asked by rajendrabehera261, 3 months ago

Ref. &
27. Find the area and periphery of a quadrant of circle whose diameter is 14 cm.
(Apprentice October 2006, Sheet Metal W
Welder, Forger & Heat Tre​

Answers

Answered by dhruvkamboj
0

Answer:

AREA OF QUADRANT= 1/4* πr²

= 1/4 * 22/7 * 7*7

= 38.5 cm²

Perimeter= 1/4 * 2πr

= 1/4 * 2 * 22/7 *7

= 11 cm

Answered by amankumaraman11
0

Diameter of quadrant = 14 cm

 \text{Perimeter = }  \bf  \bigg\{\frac{1}{4}  \times (2 \pi r) \bigg\}  + 2r\\ \rm   |or|   \\ \bf  \bigg\{\frac{1}{4}  \times ( \pi d) \bigg\}  + d \\  \\  =  > \bigg( \frac{1}{4}  \times  \frac{22}{7}  \times 14 \bigg) + 14\\  \\  =  > 14\bigg( \frac{22}{28}  + 1\bigg) \\  \\  =  > 14\bigg( \frac{22 + 28}{28} \bigg) \\  \\  =  > 14\bigg( \frac{50}{28} \bigg) \\  \\ =  >   \frac{50}{2}  \:  \:   \:  \: \rm = 25 \: cm

Area = πr²/4

 \tt  =  > \frac{ \frac{22}{7} \times {(7)}^{2}   }{4}  \\  \\ \tt  =  >  \frac{ 22 \times 7 }{4}  =  \frac{154}{4}  \\  \\ \sf  =  > 38.5 \:  \:  {cm}^{2}

Similar questions