Math, asked by Anonymous, 1 month ago



Refer the attached attachment

Attachments:

Answers

Answered by hukam0685
11

Step-by-step explanation:

Tip:

Remainder Theorem:If a polynomial p(x) is divided by a linear polynomial g(x) whose zero is x = a, the remainder is given by r = p(a).

Given:

i) \bold{ p(x) =  {x}^{3}  - 2 {x}^{2}  - 4x - 1 }\\ \bold{g(x) = x + 1 }\\

Solution: To find remainder put value of x from g(x) into p(x)

x + 1 = 0 \\ \\  x =  - 1 \\ \\  p( - 1) = { (- 1)}^{3}  - 2 {( - 1)}^{2}  - 4( - 1) - 1 \\  \\  =  - 1 - 2 + 4 - 1 \\  \\  =  - 4 + 4 \\  \\  \bold{p( - 1)= 0} \\

Thus,

Remainder is zero.

ii) \:\bold{ p(x) =  {x}^{3}    -  3{x}^{2}   + 4x  + 50} \\ \bold{g(x) = x  -  3} \\

 g(x) = 0 \\  \\ x - 3 = 0 \\  \\ x = 3 \\ \\ p(3) =  {(3)}^{3}    -  3{(3)}^{2}   + 4(3)  + 50 \\  \\  = 27 - 27 + 12 + 50 \\  \\  \bold{p(3)= 62} \\

Remainder is 62.

iii) \: \bold{p(x) = 4 {x}^{3}  -12 {x}^{2}   +  14x - 3} \\ \bold{g(x) =2 x  - 1} \\

Put g(x)=0 and from that put value of x in p(x)

2x  - 1 = 0 \\  \\ 2x = 1 \\  \\ x =  \frac{1}{2}  \\

\: p( \frac{1}{2} ) = 4 {( \frac{1}{2} )}^{3}  -12 {( \frac{1}{2} )}^{2}   +  14( \frac{1}{2} ) - 3 \\ \\  =  \frac{1}{2}  - 3 + 7 - 3 \\  \\  =  \frac{1}{2}  + 1 \\  \\ \bold{ p( \frac{1}{2} ) =  \frac{3}{2}}  \\

Remainder is 3/2.

iv) \: \bold{p(x) = {x}^{3}  -6 {x}^{2}   +  2x - 4 }\\ \bold{g(x) =1 -  \frac{3}{2}  x}  \\

1 -  \frac{3}{2} x = 0 \\   \\ \frac{3}{2}x =  1 \\  \\ x =  \frac{2}{3}  \\  \\

p( \frac{2}{3} ) = {( \frac{2}{3})}^{3}  -6 {( \frac{2}{3} )}^{2}   +  2( \frac{2}{3} )- 4 \\ \\  =  \frac{8}{27}  - 6 \times  \frac{4}{9}  +  \frac{4}{3}  - 4 \\  \\  =  \frac{8}{27}  -  \frac{8}{3}  +  \frac{4}{3}  - 4 \\  \\  =  \frac{8 - 72 + 36 -10 8}{27}  \\  \\  =  \frac{44 -1 80}{27}  \\  \\  \bold{p( \frac{2}{3} )=\frac{-136}{27} }\\

Remainder is -136/27

Hope it helps you.

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Remainder Theorem :- This theorem states that if a polynomial f (x) is divided by linear polynomial g(x) = x - a, then remainder is f(a).

 \red{\large\underline{\sf{Solution-i}}}

\rm :\longmapsto\:p(x) =  {x}^{3} -  {2x}^{2} - 4x - 1

and

\rm :\longmapsto\:g(x) = x + 1

So, when p(x) is divided by g(x), the remainder is

\rm :\longmapsto\:p( - 1) =  {( - 1)}^{3} -  {2( - 1)}^{2} - 4( - 1) - 1

\rm :\longmapsto\:p( - 1) =  - 1 -  2  + 4 - 1

\rm :\longmapsto\:p( - 1) =  - 4  + 4

\rm \implies\:\boxed{ \tt{ \: \:p( - 1) =  0 \: }}

 \red{\large\underline{\sf{Solution-ii}}}

\rm :\longmapsto\:p(x) =  {x}^{3} -  {3x}^{2} + 4x + 50

and

\rm :\longmapsto\:g(x) = x - 3

So, when p(x) is divided by g(x), the remainder is

\rm :\longmapsto\:p(3) =  {3}^{3} -  {3(3)}^{2} + 4(3) + 50

\rm :\longmapsto\:p(3) =  27 - 27 + 12 + 50

\rm \implies\:\boxed{ \tt{ \: \:p(3) =  62 \: }}

 \red{\large\underline{\sf{Solution-iii}}}

\rm :\longmapsto\:p(x) =  {4x}^{3} -  {12x}^{2} + 14x - 3

and

\rm :\longmapsto\:g(x) = 2x - 1

So, when p(x) is divided by g(x), the remainder is

\rm :\longmapsto\:p\bigg[\dfrac{1}{2} \bigg] =  4 {\bigg[\dfrac{1}{2} \bigg]}^{3}  -  12{\bigg[\dfrac{1}{2} \bigg]}^{2} + 14\bigg[\dfrac{1}{2} \bigg] - 3

\rm :\longmapsto\:p\bigg[\dfrac{1}{2} \bigg] =  4 {\bigg[\dfrac{1}{2} \bigg]}^{3}  -  12{\bigg[\dfrac{1}{2} \bigg]}^{2} + 14\bigg[\dfrac{1}{2} \bigg] - 3

\rm :\longmapsto\:p\bigg[\dfrac{1}{2} \bigg] =  4 {\bigg[\dfrac{1}{8} \bigg]}  -  12{\bigg[\dfrac{1}{4} \bigg]} + 7 - 3

\rm :\longmapsto\:p\bigg[\dfrac{1}{2} \bigg] =  {\bigg[\dfrac{1}{2} \bigg]}  -  3 + 7 - 3

\rm :\longmapsto\:p\bigg[\dfrac{1}{2} \bigg] = \dfrac{1}{2}   + 1

\rm :\longmapsto\:p\bigg[\dfrac{1}{2} \bigg] = \dfrac{1 + 2}{2}

\rm \implies\:\boxed{ \tt{ \: p\bigg[\dfrac{1}{2} \bigg] = \dfrac{3}{2} \: }}

 \red{\large\underline{\sf{Solution-iv}}}

\rm :\longmapsto\:p(x) =  {x}^{3} -  {6x}^{2} + 2x - 4

and

\rm :\longmapsto\:g(x) = 1 - \dfrac{3}{2}x

So, when p(x) is divided by g(x), the remainder is

\rm :\longmapsto\:p\bigg[\dfrac{2}{3} \bigg] =  {\bigg[\dfrac{2}{3} \bigg]}^{3} -  {6\bigg[\dfrac{2}{3} \bigg]}^{2} + 2\bigg[\dfrac{2}{3} \bigg] - 4

\rm :\longmapsto\:p\bigg[\dfrac{2}{3} \bigg] =  \dfrac{8}{27}  -  6 \times \dfrac{4}{9}  + \dfrac{4}{3}  - 4

\rm :\longmapsto\:p\bigg[\dfrac{2}{3} \bigg] =  \dfrac{8}{27}  - \dfrac{8}{3}  + \dfrac{4}{3}  - 4

\rm :\longmapsto\:p\bigg[\dfrac{2}{3} \bigg] =  \dfrac{8}{27}  - \dfrac{4}{3}   - 4

\rm :\longmapsto\:p\bigg[\dfrac{2}{3} \bigg] =  \dfrac{8 - 36 - 108}{27}

\rm \implies\:\boxed{ \tt{ \: p\bigg[\dfrac{2}{3} \bigg] =  \dfrac{ - 136}{27} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions