Math, asked by AayushJp, 1 month ago

refer the attachment

Attachments:

Answers

Answered by mathdude500
5

Question :-

Evaluate the following integral :-

\rm :\longmapsto\:\displaystyle\int\rm  \frac{1}{x +  \sqrt{x - 1} } \: dx

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{1}{x +  \sqrt{x - 1} } \: dx

To solve this integral, we use method of Substitution

Let substitute

 \red{\rm :\longmapsto\: \sqrt{x - 1} = y}

On squaring both sides, we get

 \red{\rm :\longmapsto\: x - 1 =  {y}^{2} }

 \red{\rm :\longmapsto\: x =  {y}^{2}  + 1}

So,

 \red{\rm :\longmapsto\: dx =  2{y}^{}dy}

Now, Substituting all these values in given integral, we get

\rm \:  =  \:\displaystyle\int\rm  \frac{2y}{{y}^{2} + 1  + y} \: dy

can be rewritten as

\rm \:  =  \:\displaystyle\int\rm  \frac{2y}{{y}^{2}+ y + 1} \: dy

\rm \:  =  \:\displaystyle\int\rm  \frac{2y + 1 - 1}{{y}^{2}+ y + 1} \: dy

\rm \:  =  \:\displaystyle\int\rm  \frac{2y + 1}{{y}^{2}+ y + 1} \: dy  -  \displaystyle\int\rm  \frac{1}{ {y}^{2}  + y + 1}dy

\rm \:=\:\displaystyle\int\rm  \frac{\dfrac{d}{dy} ( {y}^{2} + y + 1)}{{y}^{2}+ y + 1} \: dy  -  \displaystyle\int\rm  \frac{1}{ {y}^{2}+ y +\dfrac{1}{4} - \dfrac{1}{4}+ 1}dy

We know,

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{f'(x)}{f(x)} \: dx \:  =  \: logf(x) + c \: }}

Now, using this formula in first integral we get

\rm \:  =  \:log | {y}^{2} + y + 1 |  - \displaystyle\int\rm  \frac{1}{\bigg[ {y}^{2} + 2 \times  \dfrac{1}{2} \times y +   \dfrac{1}{4} \bigg] + \dfrac{3}{4} }

\rm \:  =  \:log | {y}^{2}  + y + 1| - \displaystyle\int\rm  \frac{1}{ {\bigg[y + \dfrac{1}{2} \bigg]}^{2}  +  {\bigg[\dfrac{ \sqrt{3} }{2} \bigg]}^{2} }

We know,

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ {x}^{2} +  {a}^{2}} = \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c }}

So, using this identity, we get

\rm \:  =  \:log | {y}^{2}  + y + 1| - \dfrac{1}{\dfrac{ \sqrt{3} }{2} } {tan}^{ - 1}\bigg[\dfrac{y +  \dfrac{1}{2} }{\dfrac{ \sqrt{3} }{2} } \bigg] + c

\rm \:  =  \:log | {y}^{2}  + y + 1| - \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\bigg[\dfrac{2y + 1}{ \sqrt{3} } \bigg] + c

On substituting the value of y, we get

\rm \:  =  \:log | x - 1  +  \sqrt{x + 1}  + 1| - \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\bigg[\dfrac{2 \sqrt{x + 1}  + 1}{ \sqrt{3} } \bigg] + c

\rm \:  =  \:log | x+  \sqrt{x + 1}| - \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\bigg[\dfrac{2 \sqrt{x + 1}  + 1}{ \sqrt{3} } \bigg] + c

More to know :-

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ {x}^{2}  -  {a}^{2} }  = \frac{1}{2a}log\bigg | \frac{x - a}{x + a} \bigg|  + c}}

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1}  \frac{x}{a}  + c}}

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } }  =  log \bigg|x +  \sqrt{ {x}^{2}  -  {a}^{2} }\bigg |   + c}}

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2} +  {a}^{2} } }  =  log \bigg|x +  \sqrt{ {x}^{2} + {a}^{2} }\bigg |   + c}}

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by XxitsmrseenuxX
19

Answer:

Question :-

Evaluate the following integral :-

\rm :\longmapsto\:\displaystyle\int\rm  \frac{1}{x +  \sqrt{x - 1} } \: dx

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{1}{x +  \sqrt{x - 1} } \: dx

To solve this integral, we use method of Substitution

Let substitute

 \red{\rm :\longmapsto\: \sqrt{x - 1} = y}

On squaring both sides, we get

 \red{\rm :\longmapsto\: x - 1 =  {y}^{2} }

 \red{\rm :\longmapsto\: x =  {y}^{2}  + 1}

So,

 \red{\rm :\longmapsto\: dx =  2{y}^{}dy}

Now, Substituting all these values in given integral, we get

\rm \:  =  \:\displaystyle\int\rm  \frac{2y}{{y}^{2} + 1  + y} \: dy

can be rewritten as

\rm \:  =  \:\displaystyle\int\rm  \frac{2y}{{y}^{2}+ y + 1} \: dy

\rm \:  =  \:\displaystyle\int\rm  \frac{2y + 1 - 1}{{y}^{2}+ y + 1} \: dy

\rm \:  =  \:\displaystyle\int\rm  \frac{2y + 1}{{y}^{2}+ y + 1} \: dy  -  \displaystyle\int\rm  \frac{1}{ {y}^{2}  + y + 1}dy

\rm \:=\:\displaystyle\int\rm  \frac{\dfrac{d}{dy} ( {y}^{2} + y + 1)}{{y}^{2}+ y + 1} \: dy  -  \displaystyle\int\rm  \frac{1}{ {y}^{2}+ y +\dfrac{1}{4} - \dfrac{1}{4}+ 1}dy

We know,

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{f'(x)}{f(x)} \: dx \:  =  \: logf(x) + c \: }}

Now, using this formula in first integral we get

\rm \:  =  \:log | {y}^{2} + y + 1 |  - \displaystyle\int\rm  \frac{1}{\bigg[ {y}^{2} + 2 \times  \dfrac{1}{2} \times y +   \dfrac{1}{4} \bigg] + \dfrac{3}{4} }

\rm \:  =  \:log | {y}^{2}  + y + 1| - \displaystyle\int\rm  \frac{1}{ {\bigg[y + \dfrac{1}{2} \bigg]}^{2}  +  {\bigg[\dfrac{ \sqrt{3} }{2} \bigg]}^{2} }

We know,

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ {x}^{2} +  {a}^{2}} = \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c }}

So, using this identity, we get

\rm \:  =  \:log | {y}^{2}  + y + 1| - \dfrac{1}{\dfrac{ \sqrt{3} }{2} } {tan}^{ - 1}\bigg[\dfrac{y +  \dfrac{1}{2} }{\dfrac{ \sqrt{3} }{2} } \bigg] + c

\rm \:  =  \:log | {y}^{2}  + y + 1| - \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\bigg[\dfrac{2y + 1}{ \sqrt{3} } \bigg] + c

On substituting the value of y, we get

\rm \:  =  \:log | x - 1  +  \sqrt{x + 1}  + 1| - \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\bigg[\dfrac{2 \sqrt{x + 1}  + 1}{ \sqrt{3} } \bigg] + c

\rm \:  =  \:log | x+  \sqrt{x + 1}| - \dfrac{2}{ \sqrt{3} } {tan}^{ - 1}\bigg[\dfrac{2 \sqrt{x + 1}  + 1}{ \sqrt{3} } \bigg] + c

More to know :-

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ {x}^{2}  -  {a}^{2} }  = \frac{1}{2a}log\bigg | \frac{x - a}{x + a} \bigg|  + c}}

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1}  \frac{x}{a}  + c}}

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } }  =  log \bigg|x +  \sqrt{ {x}^{2}  -  {a}^{2} }\bigg |   + c}}

\boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2} +  {a}^{2} } }  =  log \bigg|x +  \sqrt{ {x}^{2} + {a}^{2} }\bigg |   + c}}

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions