Math, asked by Anonymous, 1 month ago

refer the attachment carefully

Attachments:

Answers

Answered by ItzImran
10

ABCD \: be \: the \: trapezium. \\ AB||CD

Area \: of \: trapezium:

 \:  \:  \:  \:  =  \frac{1}{2 }  \times \:  \binom{sum \: of \: parallel}{sides}  \times height

∴ ABCD= \frac{1}{2}  ×(AB+CD)×AM \\ </p><p>33=  \frac{1}{2} (x+2x+1)×(x-4)

66 = 3x²-12x+x-4

3x²-11x -  70=0

3x²-21x + 10x - 70=0

3x(x-7)+ 10(x-7)= 0

</p><p>∴(3x+10) (x-7)=0

By using the property, if the proud of two numbers is zero, then at least one of them is zero, we get

(3x + 10) = 0 or (x-7)=0

 x =  \frac{ - 10}{3} \:  or \: x = 7

But, \: length \: is \: never \: negative.

x ≠ \:  \frac{ - 10}{3}

x \:  = 7

AB =&gt; x=7cm

CD=2x+1=2(7)+1=15 cm

AD = BC = x-2=7-2=5 cm

Similar questions