Refer the attachment for the questions.
Solve any 3.
Answers
Step-by-step explanation:
(iv)
Given Sec²θ + cosec²θ:
⇒ (1/cos²θ) + (1/sin²θ)
⇒ (sin²θ + cos²θ)/(cos²θ * sin²θ)
⇒ (1/cos²θ * sin²θ)
⇒ (1/cos²θ) * (1/sin²θ)
⇒ sec²θ * cosec²θ.
(v)
Given points are (4,-5) and (-1,-2).
∴ Equation of a line passing through (x₁,y₁) and (x₂,y₂) is:
⇒ (y - y₁)/(y₂ - y₁) = (x - x₁)/(x₂ - x₁)
⇒ (y + 5)/(-2 + 5) = (x - 4)/(-1 - 4)
⇒ (y + 5)/(3) = (x - 4)/(-5)
⇒ -5(y + 5) = 3(x - 4)
⇒ -5y - 25 = 3x - 12
⇒ 3x + 5y = -13
(or)
⇒ y = -(3/5)x - 13/5.
(iii)
Explained in the attachment.
Hope it helps!
Answer:
(i) In the triangle PQR:
sin 30 = 1/2 = QR/PQ
=> 1/2 = QR/12
=> QR = 6 cm
cos 30 = (_/3)/2 = PR/PQ
=> PR = 6_/3 cm
_________
(iv) Out the value of sec^2 Ø and cosec^2 Ø as:
sec^2 Ø = 1/cos^2 Ø
cosec^2 Ø = 1/sin^2 Ø
=> 1/cos^2 Ø + 1/sin^2 Ø = (sin^2 Ø + cos^2 Ø)/sin^2 Ø cos^2 Ø
=> 1/sin^2 Ø cos^2 Ø
[°.° sin^2 A + cos^2 A = 1]
=> sec^2 Ø cosec^2 Ø
Put back the values of sec^2 Ø and cosec^2 Ø, which we changed in the beginning.
(iii) in the attachment.
_____________❤
Hope it Helps :D