Math, asked by MrInocent, 2 months ago

➥Refer the attachment,
➥Kindly solve these question asap
➥Picture is clear
➥Kindly dont spam, Otherwise will report badly
➥Need content quality​

Attachments:

Answers

Answered by MoonWings
3

Answer:

answer is above with attachment !!!!

Mark me as brainlist!!

Attachments:
Answered by Anonymous
33

Question:-

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

Solution:-

(i) (cosecθ - cotθ)² = \sf{\dfrac{1 + cos\theta}{1 + cos\theta}}

⟶ Taking LHS,

We know,

  • cosecθ = \sf{\dfrac{1}{sin\theta}}

  • cotθ = \sf{\dfrac{cos\theta}{sin\theta}}

Hence,

(cosecθ - cotθ)²

= \sf{\bigg(\dfrac{1}{sin\theta} - \dfrac{cos\theta}{sin\theta}\bigg)^2}

= \sf{\bigg(\dfrac{1 - cos\theta}{sin\theta}\bigg)^2}

= \sf{\dfrac{(1 - cos\theta)^2}{sin^2\theta}}

= \sf{\dfrac{(1 - cos\theta)(1 - cos\theta)}{1 - cos^2\theta}}

= \sf{\dfrac{(1 - cos\theta)(1 - cos\theta)}{(1 - cos\theta)(1 + cos\theta)}}

= \sf{\dfrac{1 - cos\theta}{1 + cos\theta}}

Taking RHS,

= \sf{\dfrac{1 - cos\theta}{1 + cos\theta}}

Hence,

LHS = RHS (Proved)

______________________________________

(ii) \sf{\dfrac{cosA}{1 + sinA} + \dfrac{1 + sinA}{cosA} = 2 secA}

⟶ Taking LHS,

\sf{\dfrac{cosA}{1 + sinA} + \dfrac{1 + sinA}{cosA}}

Taking LCM,

= \sf{\dfrac{cos^2A + (1 + sinA)^2}{cosA(1 + sinA)}}

= \sf{\dfrac{cos^2A + 1 + 2sinA + sin^2A}{cosA(1 + sinA)}}

= \sf{\dfrac{cos^2A + sin^2A + 1 + 2sinA}{cosA(1 + sinA)}}

= \sf{\dfrac{1 + 1 + 2sinA}{cosA(1 + sinA)}}

= \sf{\dfrac{2 + 2sinA}{cosA(1 + sinA)}}

= \sf{\dfrac{2(1 + sinA)}{cosA(1 + sinA)}}

= \sf{\dfrac{2}{cosA}}

We know,

\sf{\dfrac{1}{cosA} = secA}

Hence,

= \sf{2 \times\dfrac{1}{cosA}}

= 2secA

Taking RHS,

2secA

Hence,

LHS = RHS (Proved)

______________________________________

(iii) \sf{\dfrac{tan\theta}{1 - cot\theta} + \dfrac{cot\theta}{1 - tan\theta} = 1 + sec\theta cosec\theta}

⟶ Refer to the first two attachments for solution.

Identities used:-

\sf{tan\theta = \dfrac{sin\theta}{cos\theta}}

\sf{cot\theta = \dfrac{cos\theta}{sin\theta}}

a³ - b³ = (a - b)(a² + ab + b²)

\sf{\dfrac{1}{sin\theta} = cosec\theta}

\sf{\dfrac{1}{cos\theta} = sec\theta}

______________________________________

(iv) \sf{\dfrac{1 + secA}{secA} = \dfrac{sin^2A}{1 - cosA}}

⟶ Taking LHS,

We know,

\sf{secA = \dfrac{1}{cosA}}

Hence,

\sf{\dfrac{1 + \dfrac{1}{cosA}}{\dfrac{1}{cosA}}}

= \sf{\dfrac{cosA + 1}{cosA} \times cosA}

= \sf{cosA + 1}

Taking RHS,

We know,

sin²A = 1 - cos²A

\sf{\dfrac{sin^2A}{1 - cosA}}

= \sf{\dfrac{1 - cos^2A}{1 - cosA}}

= \sf{\dfrac{(1 + cosA)(1 - cosA)}{1 - cosA)}}

= \sf{cosA + 1}

Hence,

LHS = RHS (Proved)

______________________________________

(v) \sf{\dfrac{cosA - sinA + 1}{cosA + sinA - 1} = cosecA + cotA}

⟶ Refer to the next two attachments for solution:-

Identity used:-

a² - b² = (a + b)(a - b)

And Hence,

LHS = RHS (Proved)

______________________________________

Attachments:
Similar questions