refer to attachment
Answers
Let ∠ a = 2x, then ∠b = 3x
(sum of angle in linear pair always equal to 180° )
∠XOM + ∠MOP + ∠POY = 180°
∠b + ∠a + ∠POY = 180°
given that ∠POY = 90°
plug this value we get
3x + 2x + 90° = 180°
5x = 90°
x = 18°
a = 2x = 2 × 18 = 36°
b = 3x = 3 ×18 = 54°
MN is a straight line.
sum of angle in linear pair always equal to 180°
so that ∠b + ∠c = 180°
54° + ∠c = 180°
∠c = 180° − 54° = 126°
∠ c = 126°
Explanation:
Let 2 a = 2x, then 2b = 3x
(sum of angle in linear pair always
equal to 180°)
ZXOM + ZMOP + ZPOY = 180°
<b+ 2a + ZPOY = 180°
given that ZPOY = 90°
plug this value we get
3x + 2x + 90° = 180°
5x = 90°
= 18°
= 2x
= 2 x 18
= 36°
= 3x
= 3 x18
= 54°
MN is a straight line.
sum of angle in linear pair always equal
to 180°
so that
Zb+ 2C
= 180°
54° + 20 = 180°
20 = 180° - 54° = 126°
cc = 126°