Math, asked by santa19, 2 days ago

Refer to the above attachment and plz don't spam ​

Attachments:

Answers

Answered by Shadowymaster
2

Answer in Attachment

Hope this helps please mark me brainlist

Attachments:
Answered by ⲊⲧɑⲅⲊⲏɑᴅⲟᏇ
6

Question 1 :

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

  • Express \sf{1.\bar{\:27\:}} in the form of \sf{\dfrac{p}{q}} , where p and q are integers and q ≠ 0.

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

★ Solution :

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

Let us take x = 1.27272727....

Now multiply with 100 on both sides ,

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎ \large\sf{\implies 100\times x = 100\times 1.27272727....}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\sf{\implies 100x= 127.27272727.... }

‎ㅤ

Now , subtract x = 1.27272727.... by 100x = 127.27272727...

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎ \large\sf{\implies 100x-x= 127.272727.... - 1.27272727....}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\sf{\implies 99x = 126.000....}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\sf{\implies 99x = 126}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\sf{\implies x=\cancel{\dfrac{126}{99}}}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\sf{\implies x = \dfrac{14}{11}}

Hence \sf{1.\bar{27}} can be represented in the form of  \sf{\dfrac{p}{q}} as  \sf{\dfrac{14}{11}}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

‎⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

Question 2 :

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

  • Factorise the given polynomial :

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎ \large\sf{12x^2 -7x +1}

Solution :

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

The given polynomial can be factorised by splitting the middle term :

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\sf{\implies 12x^2 -7x +1 }

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\sf{\implies \underbrace {12x^2 -3x }\underbrace{-4x+1}}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\sf{\implies 3x(4x-1)-1(4x-1)}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\sf{\implies (4x-1)(3x-1)}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

Hence , the factors of given polynomial \sf{12x^2 -7x +1} are \sf{ (4x-1)(3x-1)}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions