Math, asked by hardik1683, 2 months ago

refer to the attachhment​

Attachments:

Answers

Answered by 12thpáìn
5

Answer = 123

Step by step Explanation

Given

  \sf    x²-3x+1=0

To Find

  \sf     x⁵+ \dfrac{1}{ {x}^{5} }

  \sf     \:  \:  \:  \:  \: → \:  \: x²-3x+1=0

On Dividing Both side's by x

  \sf     \:  \:  \:  \:  \: → \:  \:  \:    \dfrac{ {x}^{2} }{x}   - \dfrac{3x}{x} + \dfrac{1}{x} = \dfrac{0}{3}

  \sf    \:  \:  \:  \:  \: → \:  \:  \:    x - 3 + \dfrac{1}{x} =0

Adding both sides by 3

  \sf    \:  \:  \:  \:  \: → \:  \:  \:    x \cancel{ - 3 }+ \dfrac{1}{x}  \cancel{ + 3}=0 + 3

  \sf    \:  \:  \:  \:  \: → \:  \:  \:    x + \dfrac{1}{x} =3 \:  \:  \:  \:  \:  -  -  -  - (1)

Now

On Squaring Both Side's

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:     \left(x + \dfrac{1}{x}  \right)^{2} = {3}^{2} }

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:     {x}^{2}  +  \dfrac{1}{ {x}^{2} }   + 2 \times  \cancel{x }\times  \dfrac{1}{ \cancel{x}} = 9 }

Subtracting both sides by 2

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:     {x}^{2}  +  \dfrac{1}{ {x}^{2} }   + 2 \ - 2 = 9  - 2}

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:     {x}^{2}  +  \dfrac{1}{ {x}^{2} }    = 7 \:  \:  \:  \:  \:  -  -  -  - (2)}

Now, Again

On Cubing both sides in Equation 1

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:   \left(  x + \dfrac{1}{x}  \right)^{3} = {3}^{3}  }

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:   \ {x}^{3}   +  \dfrac{1}{ {x}^{3} }  + 3 \times x \times  \dfrac{1}{x}(x +  \dfrac{1}{x}  )= {3}^{3}  }

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:   \ {x}^{3}   +  \dfrac{1}{ {x}^{3} }  + 3 \times3= 27 }

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:   \ {x}^{3}   +  \dfrac{1}{ {x}^{3} }  + 9= 27 }

Subtracting both sides by 9

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:   \ {x}^{3}   +  \dfrac{1}{ {x}^{3} }  + 9 - 9= 27 - 9 }

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:   \ {x}^{3}   +  \dfrac{1}{ {x}^{3} }   = 18 \:  \:  \:  \:  \:  -  -  -  - (3) }

Now

Multiplying Equation 1 and 2 , we get

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:    \left(  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \right)  \left({x}^{3}   +  \dfrac{1}{ {x}^{3} }     \right)  = 7 \times 18 }

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:     {x}^{2}  \left({x}^{3}   +  \dfrac{1}{ {x}^{3} }     \right) +  \dfrac{1}{ {x}^{2} }\left({x}^{3}   +  \dfrac{1}{ {x}^{3} }     \right)    = 126 }

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:      {x}^{5}  +  \dfrac{1}{ {x}^{5} } +   x  +  \dfrac{1}{ x }    = 126 }

Putting the value of x+1/x

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:      {x}^{5}  +  \dfrac{1}{ {x}^{5} } +   3  = 126 }

Subtracting both sides by 3

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:      {x}^{5}  +  \dfrac{1}{ {x}^{5} } +   3 - 3  = 126 - 3 }

{  \sf    \:  \:  \:  \:  \: → \:  \:  \:      {x}^{5}  +  \dfrac{1}{ {x}^{5} } + = 123}

Hance (b) is the correct option.

Similar questions