Science, asked by Anonymous, 9 months ago

refer to the attachment ​

Attachments:

Answers

Answered by Anonymous
2

answer is in the attachment given above

Attachments:
Answered by Anonymous
0

Answer:

Intially, at t = 0;

Displacement, x=1cmx=1cm

Intial velocity, v=\omega\, cm/sec.v=ωcm/sec.

Angular frequency, \omega = \pi\, rad/s^{-1}ω=πrad/s  

−1

 

It is given that,  

x(t) = A\,cos(\omega t+\phi)x(t)=Acos(ωt+ϕ)

1=A\, cos(\omega\times 0+\phi) = A\,cos\, \phi1=Acos(ω×0+ϕ)=Acosϕ

A\, cos\, \phi = 1Acosϕ=1  ...(i)  

Velocity, v=dx/dtv=dx/dt

\omega = -A\,\omega\, sin(\omega t+\phi)ω=−Aωsin(ωt+ϕ)

1=-A\, sin(\omega\times 0+\phi)=-A\,sin\,\phi1=−Asin(ω×0+ϕ)=−Asinϕ

A\,sin\,\phi = -1Asinϕ=−1   ...(ii)

Squaring and adding equations (i) and (ii), we get:

A^2(sin^2\phi+cos^2\phi)=1+1A  

2

(sin  

2

ϕ+cos  

2

ϕ)=1+1

A^2=2A  

2

=2

\therefore A = \sqrt{2}\,cm∴A=  

2

​  

cm

Dividing equation (ii) by equation (i), we get:

tan\,\phi = -1tanϕ=−1

\therefore \phi = 3\pi/4,  7\pi/4∴ϕ=3π/4, 7π/4

SHM is given as:

x= B\, sin(\omega t+\alpha)x=Bsin(ωt+α)

Putting the given values in this equation, we get:

1=B\, sin(\omega\times 0+\alpha]=1+11=Bsin(ω×0+α]=1+1

B\,sin\,\alpha=1Bsinα=1   ...(iii)

Velocity, v=\omega\, cos\,(\omega t+\alpha)v=ωcos(ωt+α)

Substituting the given values, we get:

\pi = \pi \,B\,cos\,\alphaπ=πBcosα

B\,cos\,\alpha = 1Bcosα=1  ...(iv)

Squaring and adding equations(iii) and (iv), we get:

B^2[sin^2\alpha+cos^2\alpha]=1+1B  

2

[sin  

2

α+cos  

2

α]=1+1

B^2=2B  

2

=2

\therefore B = \sqrt{2}∴B=  

2

​  

 

Dividing equation (iii) by equation (iv), we get:

B\,sin\,\alpha/B\, cos\, \alpha = 1/1Bsinα/Bcosα=1/1

tan\, \alpha = 1=tan\, \pi/4tanα=1=tanπ/4

Similar questions