Math, asked by perfection100, 1 month ago

refer to the attachment ​

Attachments:

Answers

Answered by ajr111
9

Answer:

Option (3) 2/sinθ is the correct option

Step-by-step explanation:

Given :

\mathrm{\dfrac{1}{cosec\theta - cot\theta} +  \dfrac{1}{cosec\theta + cot\theta} }

To find :

The correct answer from the following options :

(1) \ \mathrm{\dfrac{2}{cos\theta}}

(2) \ \mathrm{\dfrac{2}{cot\theta}}

(3) \ \mathrm{\dfrac{2}{sin\theta}}

(4) \ \mathrm{\dfrac{2}{cosec\theta}}

Solution :

The given expression is :

\longmapsto \mathrm{\dfrac{1}{cosec\theta - cot\theta} +  \dfrac{1}{cosec\theta + cot\theta} }

Taking LCM :

\implies \mathrm{\dfrac{cosec\theta + cot\theta+cosec\theta-cot\theta}{(cosec\theta-cot\theta)(cosec\theta + cot\theta)} }

\text{We know that, } \boxed{\mathrm{(a+b)(a-b) = a^2-b^2}}

Here, a = cosecθ ; b = cotθ

So, equation changes as,

\implies \mathrm{\dfrac{2cosec\theta}{cosec^2\theta - cot^2\theta} }

We know that,

\boxed{\mathrm{cosec^2\theta - cot^2\theta = 1} }

So,

\implies \dfrac{2cosec\theta}{1}

we know that,

\boxed{\mathrm{cosec\theta = \dfrac{1}{sin\theta} }}

Thus,

\implies \mathrm{\dfrac{2}{sin\theta}}

\therefore \underline{\boxed{\mathrm{\dfrac{1}{cosec\theta - cot\theta} +  \dfrac{1}{cosec\theta + cot\theta} } = \dfrac{2}{sin\theta}}}

Thus, Option (3) is correct.

Hope it helps!!

Similar questions