Math, asked by Anonymous, 9 hours ago

REFER TO THE ATTACHMENT​

Attachments:

Answers

Answered by mritunjaymaharshi
0

Answer:

99

Step-by-step explanation:

use the concept of surds

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{x=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\,\,\,\,\,and\,\,\,\,\,y=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}

Now, add the given expression,

\tt{x+y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}

\tt{\implies\,x+y=\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+\left(\sqrt{3}+\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}}

\tt{\implies\,x+y=\dfrac{2\left\{\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2\right\}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}}

\tt{\implies\,x+y=\dfrac{2\left\{3+2\right\}}{3-2}}

\tt{\implies\,x+y=\dfrac{2(5)}{1}=10}

And,

\tt{xy=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\cdot\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=1}

Now,

\sf{x^2+y^2+xy}

\sf{=x^2+y^2+2xy-xy}

\sf{=(x+y)^2-xy}

\sf{=(10)^2-1=99}

Similar questions