Biology, asked by Anonymous, 1 month ago

• Refer to the attachment.
• Simplify the solution.
 \\ \\
Answer it correctly :)
No, irrelevent answer needed.
don't spam!!!☘️​

Attachments:

Answers

Answered by AbhinavRocks10
4

\sf\int\limits_1^{N+1}f(x)dx\leq \sum\limits_{k=1}^{N}f(k)\leq \int\limits_0^N f(x)dx

\sf\int\limits_1^{N+1}f(x)dx\leq \sum\limits_{k=1}^{N}f(k)\leq \int\limits_0^N f(x)dx

  • After substitutions N=n2, f(x)=n/(n2+x2) and simple computations we have

\sf\arctan\frac{n^2+1}{n}-\arctan \frac{1}{n}\leq\sum\limits_{k=1}^{n^2}\sf\frac{n}{n^2+k^2}\leq\arctan narctan

\sf\arctan\frac{n^2+1}{n}-\arctan \frac{1}{n}\leq\sum\limits_{k=1}^{n^2}\frac{n}{n^2+k^2}\leq\arctan narctan

Lets take a limit n→∞, then from sandwich lemma it follows

\sf\lim\limits_{n\to\infty}\sum\limits_{k=1}^{n^2}\frac{n}{n^2+k^2}=\frac{\pi}{2}

_________________________

\sf\color{red}\underline ⇝KINDLY  \: SWIPE \:RIGHT\: SIDE \:TO\: ViEW\:FULL \:ANSWER

━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\small\boxed{ \begin{array}{cc}\large\sf\dag \: {\underline{★More \: Formulae★}} \\ \\ \bigstar \: \sf{Gain = S.P – C.P} \\ \\ \bigstar \:\sf{Loss = C.P – S.P} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array}}\end{gathered}

\sf THANKS(;

  • \large\tt{HOPE\:IT\:HELPS}

Similar questions