Math, asked by Anonymous, 1 year ago

Refer to the attachment.

Spams will be deleted on the spot.

Attachments:

Answers

Answered by MarkAsBrainliest
13
\textbf{Answer :}

Now,

1 + log2 (base 7)

= 1 + (log2)/(log7)

= (log7 + log2)/(log7)

= (log14)/(log7)

= log14 (base 7)

∴ (1/49)^{1 + log2 (base 7}

= {(1/7)²}^{log14 (base 7)}

= (1/7)^{log14 (base 7)}²

= (1/7)^{log196 (base 7)}

= [7^{log196 (base 7)}]^(- 1)

= 196^(- 1)

= 1/196

Again,

log7 (base 1/5)

= (log7)/(log 1/5)

= (log7)/(log1 - log5)

= (log7)/(- log5)

= - (log7)/(log5)

= - log7 (base 5)

∴ 5^[- log7 (base 1/5)]

= 5^[- {- log7 (base 5)}]

= 5^{log7 (base 5)}

= 7

∴ (1/49)^{1 + log2 (base 7}
+ 5^[- log7 (base 1/5)]

= 1/196 + 7

RULES :

a^{logM (base a)} = M

loga (base b) = (loga)/(logb) (base e)

#\textbf{MarkAsBrainliest}
Answered by Anonymous
110

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large\boxed{\sf{\left(\dfrac{1}{49}\right)^{1+\log _7\left(2\right)}+5^{-\log \:_{\tfrac{1}{5}}\left(7\right)}}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{7+\dfrac{1}{196}}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

→ First solve  {\sf{\left(\dfrac{1}{49}\right)^{1+\log _7\left(2\right)}}

\mathrm{Apply\:exponent\:rule}:\quad \left(\dfrac{a}{b}\right)^c=\dfrac{a^c}{b^c}

\sf{\left(\dfrac{1}{49}\right)^{1+\log _7\left(2\right)}=\dfrac{1^{1+\log _7\left(2\right)}}{49^{1+\log _7\left(2\right)}}}

\mathrm{Apply\:rule}\:1^a=1

\sf{1^{\log _7\left(2\right)+1}=1}

=\dfrac{1}{49^{1+\log _7\left(2\right)}}

\sf{49^{1+\log _{7}(2)}=2^{2} \cdot 49}

\sf{=\dfrac{1}{49^{1+\log _7\left(2\right)}}=\dfrac{1}{2^2\cdot \:49}}

\sf{2^2\cdot \:49=196}

\sf{\dfrac{1}{2^2\cdot \:49}}=\boxed{\sf{{\dfrac{1}{196}}}}}

\large\boxed{\sf{\left(\dfrac{1}{49}\right)^{1+\log _7\left(2\right)}}=\dfrac{1}{196}}}

_______________________________

→ Now solve \sf{5^{-\log \:_{\tfrac{1}{5}}\left(7\right)}}

\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\dfrac{1}{a^b}

5^{-\log _{\tfrac{1}{5}}\left(7\right)}=\dfrac{1}{5^{\log _{\tfrac{1}{5}}\left(7\right)}}

\sf{5^{\log _{\tfrac{1}{7}}(7)}=\dfrac{1}{7}}

=\dfrac{1}{\dfrac{1}{7}}

=\dfrac{7}{1}

\sf{=7}

\large{\boxed{\sf{5^{-\log \:_{\tfrac{1}{5}}\left(7\right)}=7}}}

_______________________________

\large\boxed{\sf{\left(\dfrac{1}{49}\right)^{1+\log _7\left(2\right)}+5^{-\log \:_{\tfrac{1}{5}}\left(7\right)}=\underline{\underline{7+\dfrac{1}{196}}}}}

Similar questions