Math, asked by ilomilo, 11 months ago

Refer to the attachment. Thank you!​

Attachments:

Answers

Answered by brainlypartner
1

Answer:

x

Step-by-step explanation:

tan + cot = x

 \frac{ \sin}{ \cos  }  +  \frac{ \cos }{ \sin }  = x \\    \frac{ {sin}^{2} \:  +  {cos}^{2}  }{sin \times cos }   = x \\  \frac{1}{sin \times cos}  = x \\ sec \times cosec = x

Answered by Anonymous
9

\huge{\underline{\underline{\green{\mathfrak{Answer:}}}}}

Given

\mathsf{tan\theta + cot\theta = x}

To find

\mathsf{sec\theta × cosec\theta}

METHOD 1

1. Finding the value of cosecθ

\mathsf{\frac{1}{cot\theta} + cot\theta = x}

\mathsf{\frac{1}{cot\theta} + cot\theta = x}

\mathsf{\frac{1 + cot^2\theta}{cot\theta} = x}

\mathsf{\frac{cosec^2\theta}{cot\theta} = x}

\mathsf{cosec^2\theta = x\:cot\theta}

\mathsf{cosec^2\theta = \sqrt{x\:cot\theta}\rightarrow\:(1)}

2. Finding the value of secθ

\mathsf{tan\theta + \frac{1}{tan\theta} = x}

\mathsf{\frac{tan^2 + 1}{tan\theta} = x}

\mathsf{\frac{sec^2\theta}{tan\theta} = x}

\mathsf{sec^2\theta = x\:tan\theta}

\mathsf{sec\theta = \sqrt{x\:tan\theta}\rightarrow\:(2)}

Putting the values of cosecθ and secθ

\mathsf{\implies\:sec\theta × cosec\theta}

\mathsf{\implies\:\sqrt{x\:tan\theta} × \sqrt{x\:cot\theta}}

\mathsf{\implies\:\sqrt{x}\:\sqrt{tan\theta} × \sqrt{x}\:\sqrt{cot\theta}}

\mathsf{\implies\:x\:\sqrt{tan\theta} × \sqrt{\frac{1}{tan\theta}}}

\mathsf{\implies\:x\:\sqrt{tan\theta} × \frac{1}{\sqrt{tan\theta}}}

\mathsf{Cancelling \:\sqrt{tan\theta}}

\fbox{\mathsf{\implies\:x}}

METHOD 2

\mathsf{\implies\:tan\theta + cot\theta = x}

\mathsf{\implies\:    \frac{sin\theta}{cos\theta} + \frac{cos\theta}{sin\theta} = x}

Taking LCM of the denominator

\mathsf{\implies \:  \frac{sin^2\theta + cos^2\theta}{cos\theta\:sin\theta} = x}

\fbox{\mathsf{Using \:identity\:: sin^2\theta + cos^2\theta = 1}}

\mathsf{\implies\: \frac{1}{cos\theta\:sin\theta} = x}

\mathsf{\implies\:\frac{1}{cos\theta} × \frac{1}{sin\theta} = x}

\fbox{\mathsf{Using\:inverse\:identity}}

\mathsf{\implies \:\sec\theta × cosec\theta = x}

Similar questions