reffer the following attachment
Answers
Answer:
Solution−
Given that,
The total CP of 2 items is Rs.1200 and the CP of the first one is 1.5 times the CP of the other.
Let assume that,
Cost Price of second item be Rs x
So, cost price of first item is Rs 1.5 x
According to statement, the total cost price of 2 items is Rs 1200.
\begin{gathered}\rm \: x + 1.5x = 1200 \\ \end{gathered}
x+1.5x=1200
\begin{gathered}\rm \: 2.5x = 1200 \\ \end{gathered}
2.5x=1200
\rm \: x = \dfrac{1200}{2.5}x=
2.5
1200
\rm \: x = \dfrac{1200 \times 10}{25}x=
25
1200×10
\begin{gathered}\rm\implies \:x = 48 \\ \end{gathered}
⟹x=48
So, we have
Cost Price of second item = Rs 480.
Now, Further given that,
Selling Price of second item = Rs 520
Since, Selling Price > Cost Price
So, it means, there is Profit in this transaction.
We know,
\begin{gathered}\boxed{\sf{ \:\rm \: Profit\% = \frac{Selling \: Price - Cost \: Price}{Cost \: Price} \times 100\% \: \: }} \\ \end{gathered}
Profit%=
CostPrice
SellingPrice−CostPrice
×100%
So, on substituting the values, we get
\begin{gathered}\rm \: Profit\% = \dfrac{520 - 480}{480} \times 100\% \\ \end{gathered}
Profit%=
480
520−480
×100%
\begin{gathered}\rm \: Profit\% = \dfrac{40}{480} \times 100\% \\ \end{gathered}
Profit%=
480
40
×100%
\begin{gathered}\rm \: Profit\% = \dfrac{1}{12} \times 100\% \\ \end{gathered}
Profit%=
12
1
×100%
\begin{gathered}\rm \: Profit\% = \dfrac{1}{3} \times 25\% \\ \end{gathered}
Profit%=
3
1
×25%
\begin{gathered}\rm\implies \:Profit \: \% \: = \: 8.33\% \\ \end{gathered}
⟹Profit%=8.33%
So, option (b) is correct.
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★Gain=S.P.–C.P.
★Loss=C.P.–S.P.
★Gain%=(
C.P.
Gain
×100)%
★Loss%=(
C.P.
Loss
×100)%
★S.P.=
100
(100+Gain%)or(100−Loss%)
×C.P.
Answer:
Hoii question puch na
Onnaanannana