India Languages, asked by pratapnayak57, 19 days ago

reffer the following attachment​

Attachments:

Answers

Answered by guptababuram234
0

Answer:

Solution−

Given that,

The total CP of 2 items is Rs.1200 and the CP of the first one is 1.5 times the CP of the other.

Let assume that,

Cost Price of second item be Rs x

So, cost price of first item is Rs 1.5 x

According to statement, the total cost price of 2 items is Rs 1200.

\begin{gathered}\rm \: x + 1.5x = 1200 \\ \end{gathered}

x+1.5x=1200

\begin{gathered}\rm \: 2.5x = 1200 \\ \end{gathered}

2.5x=1200

\rm \: x = \dfrac{1200}{2.5}x=

2.5

1200

\rm \: x = \dfrac{1200 \times 10}{25}x=

25

1200×10

\begin{gathered}\rm\implies \:x = 48 \\ \end{gathered}

⟹x=48

So, we have

Cost Price of second item = Rs 480.

Now, Further given that,

Selling Price of second item = Rs 520

Since, Selling Price > Cost Price

So, it means, there is Profit in this transaction.

We know,

\begin{gathered}\boxed{\sf{ \:\rm \: Profit\% = \frac{Selling \: Price - Cost \: Price}{Cost \: Price} \times 100\% \: \: }} \\ \end{gathered}

Profit%=

CostPrice

SellingPrice−CostPrice

×100%

So, on substituting the values, we get

\begin{gathered}\rm \: Profit\% = \dfrac{520 - 480}{480} \times 100\% \\ \end{gathered}

Profit%=

480

520−480

×100%

\begin{gathered}\rm \: Profit\% = \dfrac{40}{480} \times 100\% \\ \end{gathered}

Profit%=

480

40

×100%

\begin{gathered}\rm \: Profit\% = \dfrac{1}{12} \times 100\% \\ \end{gathered}

Profit%=

12

1

×100%

\begin{gathered}\rm \: Profit\% = \dfrac{1}{3} \times 25\% \\ \end{gathered}

Profit%=

3

1

×25%

\begin{gathered}\rm\implies \:Profit \: \% \: = \: 8.33\% \\ \end{gathered}

⟹Profit%=8.33%

So, option (b) is correct.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

MoreFormulae

MoreFormulae

★Gain=S.P.–C.P.

★Loss=C.P.–S.P.

★Gain%=(

C.P.

Gain

×100)%

★Loss%=(

C.P.

Loss

×100)%

★S.P.=

100

(100+Gain%)or(100−Loss%)

×C.P.

Answered by santa19
3

Answer:

Hoii question puch na

Onnaanannana

Similar questions