Chemistry, asked by ogunkunledeborah1, 1 month ago

Refractive index is 1.5 . Calculate the angle of refraction if the angle of incidence is 30

Answers

Answered by RISH4BH
32

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Given :- }}}}

  • The refractive index is 1.5 .
  • The angle of incidence is 30° .

\red{\bigstar}\underline{\underline{\textsf{\textbf{ To Find :- }}}}

  • The angle of refraction .

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Solution :- }}}}

We need to find the angle of refraction . We know that , By Snell's Law , the refractive index of a medium is defined as the ratio of sine of angle of incidence to the Sine of angle of refraction. So that ,

\sf\dashrightarrow Refractive\ Index =\dfrac{sin\ i }{sin \ r }   \\\\\\\sf\dashrightarrow 1.5 =\dfrac{ sin\ 30^o }{sin \ r }   \\\\\\\sf\dashrightarrow sin \ r = \dfrac{sin\ 30^o}{1.5}   \\\\\\\sf\dashrightarrow sin\ r =\dfrac{ 0.5}{1.5}   \\\\\\\sf\dashrightarrow sin\ r = \dfrac{ 1}{3}  \\\\\\\sf\dashrightarrow r = sin^{-1}\bigg(\dfrac{1}{3}\bigg)   \\\\\\\sf\dashrightarrow </p><p>   \underset{\blue{\sf Required \ Angle }}{\underbrace{\boxed{\pink{\frak{ Angle_{(of\ refraction)}= 19.27^o }}}}}

\rule{200}3

Similar questions