Physics, asked by deepaksoni3138, 1 year ago

Refractive index of glass is 1.65 .what is the speed of light in glass

Answers

Answered by vidjaksh
2

you know that refractive index is inversely proportional to velocity of light. i would take it relative to air. then, n1/n2=v2/v1 = 1.65/1=3×10^8/v1 then u would get v1.hope you understand please mark brainliest.

Answered by Anonymous
60

Given :

 \bf Refractive \: index \: of \: flint \: glass, \: η_{g} = 1.65

To Find :

 \bf Speed \: of \: light \:  in \:  glass, v_{g}

Solution :

 \bf We \: know \:  that \: speed \: of \: light \: in \: air, c=3×10⁸m/s

Now, by formula :

 \bf η_{g} = \dfrac{c}{v_{g}}

 \bf \implies v_{g} = \dfrac{c}{η_{g}}

 \bf \implies v_{g} = \dfrac{3 \times 10^{8}m/s}{1.65}

 \bf \implies v_{g} = \dfrac{3}{1.65}\times 10^{8}m/s

 \bf \implies v_{g} = \dfrac{3 \times 100}{165}\times 10^{8}m/s

 \bf \implies v_{g} = \dfrac{\cancel{3} \times 100}{\times{\cancel{165}}_{55}}\times 10^{8}m/s

 \bf \implies v_{g} = \dfrac{100}{55}\times 10^{8}m/s

 \bf \implies v_{g} = 1.8181... \times 10^{8}m/s

 \bf \implies v_{g} = 1.82 \times 10^{8}m/s \: (approx.)

 \bf \therefore Speed \: of \: light \:  in \:  glass, v_{g} =  1.82 \times 10^{8}m/s \: (approx.)

Similar questions