Physics, asked by jeslinbenittaj, 9 months ago

relation between linear momentum and position for harmonic oscillator of mass m is shown in the figure.the time period of oscillations is...​

Attachments:

Answers

Answered by aristocles
16

Answer:

Time period of the oscillator is given as

T = \frac{2\pi ma}{b}

Explanation:

As per the graph shown the equation is given as

\frac{p^2}{b^2} + \frac{x^2}{a^2} = 1

now we have

p^2 = b^2(1 - \frac{x^2}{a^2})

now we have

p = b \sqrt{(1 - \frac{x^2}{a^2})}

so we have

v = \frac{b}{ma}\sqrt{a^2 - x^2}

now we know that the velocity of harmonic oscillator is given as

v = \omega\sqrt{A^2 - x^2}

by comparison with above equation we have

\omega = \frac{b}{ma}

so the time period of the oscillation is given as

T = \frac{2\pi}{\omega}

T = \frac{2\pi ma}{b}

#Learn

Topic : SHM

https://brainly.in/question/8076594

Answered by Anonymous
2

Answer:

Relation between linear momentum and position for harmonic oscillator of mass

Explanation:

Oscillatory Motion and Waves

Simple Harmonic Motion:

The oscillations of a system in which the net force can be described by Hooke’s law are of special importance, because they are very common. They are also the simplest oscillatory systems. Simple Harmonic Motion (SHM) is the name given to oscillatory motion for a system where the net force can be described by Hooke’s law, and such a system is called a simple harmonic oscillator. If the net force can be described by Hooke’s law and there is no damping (by friction or other non-conservative forces), then a simple harmonic oscillator will oscillate with equal displacement on either side of the equilibrium position, as shown for an object on a spring in link. The maximum displacement from equilibrium is called the amplitude X. The units for amplitude and displacement are the same, but depend on the type of oscillation. For the object on the spring, the units of amplitude and displacement are meters; whereas for sound oscillations, they have units of pressure (and other types of oscillations have yet other units). Because amplitude is the maximum displacement, it is related to the energy in the oscillation.

Take-Home Experiment: SHM and the Marble

Find a bowl or basin that is shaped like a hemisphere on the inside. Place a marble inside the bowl and tilt the bowl periodically so the marble rolls from the bottom of the bowl to equally high points on the sides of the bowl. Get a feel for the force required to maintain this periodic motion. What is the restoring force and what role does the force you apply play in the simple harmonic motion (SHM) of the marble?

An object attached to a spring sliding on a frictionless surface is an uncomplicated simple harmonic oscillator. When displaced from equilibrium, the object performs simple harmonic motion that has an amplitude X and a period T. The object’s maximum speed occurs as it passes through equilibrium. The stiffer the spring is, the smaller the period T. The greater the mass of the object is, the greater the period T.

The figure a shows a spring on a frictionless surface attached to a bar or wall from the left side. On the right side of the spring, an object attached to it with mass m, its amplitude is given by X, and X is equal to zero at the equilibrium level. Force F is applied to it from the right side, shown with left direction pointed red arrow and velocity v is equal to zero. A direction point showing the north and west direction is also given alongside this figure as well as with other four figures. In figure b, after the force has been applied the object moves to the left compressing the spring a bit. And the displaced area of the object from its initial point is shown in sketched dots. The F here is equal to zero and the v is max in negative direction. In figure c, the spring has been compressed to the maximum level, and the amplitude is negative X. Now the direction of force changes to the rightward direction, shown with right direction pointed red arrow and the velocity v is zero. In figure d the spring is shown released from the compressed level and the object has moved toward the right side up to the equilibrium level. The F is zero, and the velocity v is maximum. In figure e the spring has been stretched loose to the maximum level and the object has moved to the far right. Now again the velocity here is equal to zero and the direction of force again is to the left hand side, shown here as F is equal to zero.

One special thing is that the period T and frequency f of a simple harmonic oscillator are independent of amplitude. The string of a guitar, for example, will oscillate with the same frequency whether plucked gently or hard. Because the period is constant, a simple harmonic oscillator can be used as a clock.

Two important factors do affect the period of a simple harmonic oscillator. The period is related to how stiff the system is. A very stiff object has a large force constant k, which causes the system to have a smaller period. For example, you can adjust a diving board’s stiffness—the stiffer it is, the faster it vibrates, and the shorter its period. Period also depends on the mass of the oscillating system.

Similar questions