Math, asked by ysethuraman13, 3 months ago

Relation R on the set A={ 1,2,3 ..20] is defined as R = {(x,y):3x-y=0}.
Determine whether the given relation is reflexive, symmetric and transitive.​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathsf{A=\{1,2,3,\;.\;.\;.20\}\;and\;R=\{(x,y)|\;3x-y=0\}}

\textbf{To Check:}

\textsf{Whether R is reflexive, symmetric and transitive}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{_xR_y\;\iff\;3x-y=0}

\mathsf{3(1)-3=0\;\implies\;_1R_3}

\mathsf{3(2)-6=0\;\implies\;_2R_6}

\mathsf{3(3)-9=0\;\implies\;_3R_9}

\mathsf{3(4)-12=0\;\implies\;_4R_{12}}

\mathsf{3(5)-15=0\;\implies\;_5R_{15}}

\mathsf{3(6)-18=0\;\implies\;_6R_{18}}

\implies\mathsf{R=\{(1,3),(2,6),(3,9),(4,12),(5,15),(6,18)\}}

\mathsf{1.\;(1,1)\;\notin\;R}

\therefore\mathsf{R\;is\;not\;reflexive}

\mathsf{2.\;(1,3)\;\in\;R}

\mathsf{But\;(3,1)\;\notin\;R}

\therefore\mathsf{R\;is\;not\;symmetric}

\mathsf{3.\;(1,3)\in\,R\;and\;(3,9)\in\,R}

\implies\mathsf{(1,9)\,\notin\;R}

\therefore\mathsf{R\;is\;not\;transitive}

\textbf{Find more:}

R be a relation on Z defined by R= {(a,b): a-b is an integer} show that R is an equivalence relation

https://brainly.in/question/19406439

Similar questions