Remainder of x²+ax²+6x+a is divided by (x+a)
Answers
Answered by
0
x+a=0
x=-a
putting in the equation
(-a)²+a(-a)²+6(-a)+a
=a²+a³-6a+a
=a³+a²-5a
=a(a²+a-5)
ols mark as brainliest
Answered by
0
Hi friend
Hi friendYour answer
Hi friendYour answerLet f(x) = x³ - ax² + 6x - a
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,f(a) = x³ - ax² + 6x - a
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,f(a) = x³ - ax² + 6x - a=> (a)³ - a×(a)² + 6×a - a
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,f(a) = x³ - ax² + 6x - a=> (a)³ - a×(a)² + 6×a - a=> a³ - a³ + 6a - a
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,f(a) = x³ - ax² + 6x - a=> (a)³ - a×(a)² + 6×a - a=> a³ - a³ + 6a - a=> 5a
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,f(a) = x³ - ax² + 6x - a=> (a)³ - a×(a)² + 6×a - a=> a³ - a³ + 6a - a=> 5aTherefore,
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,f(a) = x³ - ax² + 6x - a=> (a)³ - a×(a)² + 6×a - a=> a³ - a³ + 6a - a=> 5aTherefore,Remainder = 5a
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,f(a) = x³ - ax² + 6x - a=> (a)³ - a×(a)² + 6×a - a=> a³ - a³ + 6a - a=> 5aTherefore,Remainder = 5aHOPE IT HELPS
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,f(a) = x³ - ax² + 6x - a=> (a)³ - a×(a)² + 6×a - a=> a³ - a³ + 6a - a=> 5aTherefore,Remainder = 5aHOPE IT HELPS#ARCHITECTSETHROLLINS
Hi friendYour answerLet f(x) = x³ - ax² + 6x - aSo,When,f(a) = x³ - ax² + 6x - a=> (a)³ - a×(a)² + 6×a - a=> a³ - a³ + 6a - a=> 5aTherefore,Remainder = 5aHOPE IT HELPS#ARCHITECTSETHROLLINS✯ BRAINLY STAR ✯
Similar questions
Accountancy,
4 months ago
Political Science,
4 months ago
Biology,
9 months ago
Chemistry,
9 months ago
Chemistry,
1 year ago
Math,
1 year ago
Math,
1 year ago